首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Co‐inheritance in life‐history traits may result in unpredictable evolutionary trajectories if not accounted for in life‐history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life‐history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that these two traits are co‐inherited around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8–3.5 90% CI) times higher for fish with the early‐maturing vgll3 genotype (EE) compared to fish with the late‐maturing genotype (LL). The L allele was dominant in individuals remaining only one year at sea before maturation, but the dominance was reversed, with the E allele being dominant in individuals maturing after two or more years at sea. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first‐time spawners, across all age groups, whereas this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life‐history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.  相似文献   

2.
Temperament traits are seen in many animal species, and recent evolutionary models predict that they could be maintained by heterogeneous selection. We tested this prediction by examining density‐dependent selection in juvenile common lizards Zootoca vivipara scored for activity, boldness and sociability at birth and at the age of 1 year. We measured three key life‐history traits (juvenile survival, body growth rate and reproduction) and quantified selection in experimental populations at five density levels ranging from low to high values. We observed consistent individual differences for all behaviours on the short term, but only for activity and one boldness measure across the first year of life. At low density, growth selection favoured more sociable lizards, whereas viability selection favoured less active individuals. A significant negative correlational selection on activity and boldness existed for body growth rate irrespective of density. Thus, behavioural traits were characterized by limited ontogenic consistency, and natural selection was heterogeneous between density treatments and fitness traits. This confirms that density‐dependent selection plays an important role in the maintenance of individual differences in exploration‐activity and sociability.  相似文献   

3.
Age at first reproduction is an important determinant of individual variation in reproductive success in ungulates, but few studies have examined its relationship with later fitness‐related traits in males. We used a long‐term individual based study of a harvested moose population to quantify the individual reproductive performance and survival of males, as well as to examine the determinants of age at first reproduction and consequences of age at first reproduction on lifetime breeding success. The probability that a male successfully reproduced at the age of two was negatively related to the mean age of adult males in the population, but the relationship weakened with increasing population size. Large antlers and large body mass relative to other males in the population increased the number of calves sired at their first successful mating season. In addition, those that successfully reproduced as two year‐olds were more likely to sire calves the next year, making them more productive at a given age compared to those that first reproduced at the age of three or older. We emphasize the importance for males to start reproducing as soon as possible in a harvested population to gain lifetime fitness benefits, as surviving the hunt is a major determinant of reproductive success in this population. We found no costs of early reproduction in males, hence leading to high individual heterogeneity in male reproductive performance. The apparent lack of reproductive costs could partly be explained by the age distribution in the population, individual variation in early‐life body mass and antler size, and differences in probabilities of being hunted of successful and unsuccessful males.  相似文献   

4.
Whether contemporary human populations are still evolving as a result of natural selection has been hotly debated. For natural selection to cause evolutionary change in a trait, variation in the trait must be correlated with fitness and be genetically heritable and there must be no genetic constraints to evolution. These conditions have rarely been tested in human populations. In this study, data from a large twin cohort were used to assess whether selection will cause a change among women in a contemporary Western population for three life-history traits: age at menarche, age at first reproduction, and age at menopause. We control for temporal variation in fecundity (the "baby boom" phenomenon) and differences between women in educational background and religious affiliation. University-educated women have 35% lower fitness than those with less than seven years education, and Roman Catholic women have about 20% higher fitness than those of other religions. Although these differences were significant, education and religion only accounted for 2% and 1% of variance in fitness, respectively. Using structural equation modeling, we reveal significant genetic influences for all three life-history traits, with heritability estimates of 0.50, 0.23, and 0.45, respectively. However, strong genetic covariation with reproductive fitness could only be demonstrated for age at first reproduction, with much weaker covariation for age at menopause and no significant covariation for age at menarche. Selection may, therefore, lead to the evolution of earlier age at first reproduction in this population. We also estimate substantial heritable variation in fitness itself, with approximately 39% of the variance attributable to additive genetic effects, the remainder consisting of unique environmental effects and small effects from education and religion. We discuss mechanisms that could be maintaining such a high heritability for fitness. Most likely is that selection is now acting on different traits from which it did in pre-industrial human populations.  相似文献   

5.
Despite accumulating examples of selection acting on heritable traits in the wild, predicted evolutionary responses are often different from observed phenotypic trends. Various explanations have been suggested for these mismatches. These include within‐individual changes across lifespan that can create important variation in genetic architecture of traits and selection acting on them, but also potential problems with the methodological approach used to predict evolutionary responses of traits. Here, we used an 8‐year data set on tree swallow (Tachycineta bicolor) to first assess the effects of differences among three nestling life‐history stages on the genetic (co)variances of two morphological traits (body mass and primary feather length) and the selection acting on them over three generations. We then estimated the evolutionary potential of these traits by predicting their evolutionary responses using the breeder's equation and the secondary theorem of selection approaches. Our results showed variation in strength and direction of selection and slight changes in trait variance across ages. Predicted evolutionary responses differed importantly between both approaches for half of the trait–age combinations we studied, suggesting the presence of environmentally induced correlations between focal traits and fitness possibly biasing breeder's equation predictions. Our results emphasize that predictions of evolutionary potential for morphological traits are likely to be highly variable, both in strength and direction, depending on the life stage and method used, thus mitigating our capacity to predict adaptation and persistence of wild populations.  相似文献   

6.
We tested mutation accumulation hypothesis for the evolution of senescence using short‐lived and long‐lived populations of the seed‐feeding beetle, Acanthoscelides obtectus (Say), obtained by selection on early‐ and late‐life for many generations. The expected consequence of the mutation accumulation hypothesis is that in short‐lived populations, where the force of natural selection is the strongest early in life, the late‐life fitness traits should decline due to genetic drift which increases the frequency of mutations with deleterious effects in later adult stages. Since it is unlikely that identical deleterious mutations will increase in several independent populations, hybrid vigor for late‐life fitness is expected in offspring obtained in crosses among populations selected for early‐life fitness traits. We tested longevity of both sexes, female fecundity and male reproductive behavior for hybrid vigor by comparing hybrid and nonhybrid short‐lived populations. Hybrid vigor was confirmed for male virility, mating speed and copulation duration, and longevity of both sexes at late ages. In contrast to males, the results on female fecundity in short‐lived populations did not support mutation accumulation as a genetic mechanism for the evolution of this trait. Contrary to the prediction of this hypothesis, male mating ability indices and female fecundity in long‐lived populations exhibited hybrid vigor at all assayed age classes. We demonstrate that nonhybrid long‐lived populations diverged randomly regarding female and male reproductive fitness, indicating that sexually antagonistic selection, when accompanied with genetic drift for female fecundity and male virility, might be responsible for overriding natural selection in the independently evolving long‐lived populations.  相似文献   

7.
Costs of reproduction are expected to vary with environmental conditions thus influencing selection on life‐history traits. Yet, the effects of habitat conditions and climate on trade‐offs among fitness components remain poorly understood. For 2–5 years, we quantified costs of experimentally increased reproduction in two populations (coastal long‐season vs. inland short‐season) of two long‐lived orchids that differ in natural reproductive effort (RE; 30 vs. 75% fruit set). In both species, survival costs were found only at the short‐season site, whereas growth and fecundity costs were evident at both sites, and both survival and fecundity costs declined with increasing growing season length and/or summer temperature. The results suggest that the expression of costs of reproduction depend on the local climate, and that climate warming could result in selection favouring increased RE in both study species.  相似文献   

8.
Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment‐specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2‐5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.  相似文献   

9.
Understanding how selection operates on a set of phenotypic traits is central to evolutionary biology. Often, it requires estimating survival (or other fitness‐related life‐history traits) which can be difficult to obtain for natural populations because individuals cannot be exhaustively followed. To cope with this issue of imperfect detection, we advocate the use of mark‐recapture data and we provide a general framework for both the estimation of linear and nonlinear selection gradients and the visualization of fitness surfaces. To quantify the strength of selection, the standard second‐order polynomial regression method is integrated in mark‐recapture models. To visualize the form of selection, we use splines to display selection acting on multivariate phenotypes in the most flexible way. We employ Markov chain Monte Carlo sampling in a Bayesian framework to estimate model parameters, assessing traits relevance and calculating the optimal amount of smoothing. We illustrate our approach using data from a wild population of Common blackbirds (Turdus merula) to investigate survival in relation to morphological traits, and provide evidence for correlational selection using the new methodology. Overall, the framework we propose will help in exploring the full potential of mark‐recapture data to study natural selection.  相似文献   

10.
Incomplete information regarding both selection regimes and the genetic basis of fitness limits our understanding of adaptive evolution. Among‐year variation in the genetic basis of fitness is rarely quantified, and estimates of selection are typically based on single components of fitness, thus potentially missing conflicting selection acting during other life‐history stages. Here, we examined among‐year variation in selection on a key life‐history trait and the genetic basis of fitness covering the whole life cycle in the annual plant Arabidopsis thaliana. We planted freshly matured seeds of >200 recombinant inbred lines (RILs) derived from a cross between two locally adapted populations (Italy and Sweden), and both parental genotypes at the native site of the Swedish population in three consecutive years. We quantified selection against the nonlocal Italian genotype, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on timing of germination during different life stages. In all 3 years, the local Swedish genotype outperformed the nonlocal Italian genotype. However, both the contribution of early life stages to relative fitness, and the effects of fitness QTL varied among years. Timing of germination was under conflicting selection through seedling establishment vs. adult survival and fecundity, and both the direction and magnitude of net selection varied among years. Our results demonstrate that selection during early life stages and the genetic basis of fitness can vary markedly among years, emphasizing the need for multiyear studies considering the whole life cycle for a full understanding of natural selection and mechanisms maintaining local adaptation.  相似文献   

11.
We examined the influence of parental age on life history traits of their offspring in the lines of bean weevil that have evolved different rates of senescence. Measurements included preadult traits (egg size, embryonic developmental time, total preadult developmental time, preadult viability) and adult traits (body weight, total realized fecundity of females, first day of egg laying, early fecundity, late fecundity and longevity). The negative parental age effects were observed for all traits except for the early and total realized fecundity. We did not detect statistically significant line×parental age interactions for either preadult- or adult-survival, so offspring survival did not change with parental age after selection for early vs. late reproduction. It seems that selection acting on the quality of offspring produced by parents of different ages has not been responsible for the evolution of senescence in bean weevil. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Early developmental conditions contribute to individual heterogeneity of both phenotypic traits and fitness components, ultimately affecting population dynamics. Although the demographic consequences of ontogenic growth are best quantified using an integrated measure of fitness, most analyses to date have instead studied individual fitness components in isolation. Here, we estimated phenotypic selection on weaning mass in female southern elephant seals Mirounga leonina by analyzing individual‐based data collected between 1986 and 2016 with capture–recapture and matrix projection models. In support of a hypothesis predicting a gradual decrease of weaning mass effects with time since weaning (the replacement hypothesis), we found that the estimated effects of weaning mass on future survival and recruitment probability was of intermediate duration (rather than transient or permanent). Heavier female offspring had improved odds of survival in early life and a higher probability to recruit at an early age. The positive link between weaning mass and recruitment age is noteworthy, considering that pre‐recruitment mortality already imposed a strong selective filter on the population, leaving only the most ‘robust’ individuals to reproduce. The selection gradient on asymptotic population growth rate, a measure of mean absolute fitness, was weaker than selection on first‐year survival and recruitment probabilities. Weaker selection on mean fitness occurs because weaning mass has little impact on adult survival, the fitness component to which the population growth of long‐lived species is most sensitive. These results highlight the need to interpret individual variation in phenotypic traits in a context that considers the demographic pathways between the trait and an inclusive proxy of individual fitness. Although variation in weaning mass do not translate to permanent survival differences among individuals in adulthood, it explains heterogeneity and positive covariation between survival and breeding in early life, which contribute to between‐individual variation in fitness.  相似文献   

13.
Josh R. Auld  Anne Charmantier 《Oikos》2011,120(8):1129-1138
Reproductive senescence, an intra‐individual decline in reproductive function with age, is widespread, but proximate factors determining its rate remain largely unknown. Most studies of reproductive senescence focus on females, leaving senescence in male function and its implications for female function largely understudied. We constructed linear mixed models to explore the interactive effects of paternal and maternal age and a life‐history trait (i.e. age at first reproduction) on four fitness components (i.e. laying date, clutch size, number of fledglings and number of recruits) measured in a wild, breeding population of blue tits Cyanistes caeruleus ogliastrae where individual breeding success has been followed for over 30 years (our dataset spanned 29 years). Previous studies have shown that, across female lifespan, laying date decreases and subsequently increases; earlier laying dates result in higher fitness because hatchlings have greater access to a seasonal food source. Our analyses reveal that females that initiate reproduction early in life show a greater delay in laying date with old age. In addition to delayed laying dates, older females lay smaller clutches. However, the magnitude of female age effects was influenced by the age at first reproduction of their breeding partners. Senescence of laying date and clutch size was reduced when females mated with males that reproduced early in life compared to males that delayed reproduction. We confirmed that both laying date and clutch size were significantly correlated with reproductive fitness suggesting that these dynamics early in the breeding cycle can have long‐term consequences. These complex phenotypic interactions shed light on the proximate mechanisms underlying reproductive senescence in nature and highlight the potential importance of cross‐sex age by life‐history interactions.  相似文献   

14.
Abstract The timing of life‐history events in insects can have important consequences for both survival and reproduction. For insect herbivores with complex life histories, selection is predicted to favor those combinations of traits that increase the size at metamorphosis while minimizing the risk of mortality from natural enemies. Studies quantifying selection on life‐history traits in natural insect herbivore populations, however, have been rare. The purpose of this study was to measure phenotypic selection imposed by elements of the first and third trophic levels on variation in two life‐history traits, the timing of egg hatch and pupal mass, in a population of oak‐feeding caterpillars, Psilocorsis quercicella (Lepidoptera: Oecophoridae). Larvae were collected from the field throughout each of two generations per year for three years and reared to determine the effects of the date of egg hatch on both the risk of attack from parasitoids and the pupal mass of the survivors. The direction and strength of phenotypic selection attributed to aspects of the first and third trophic levels, as well as their combined effects, on the date of egg hatch was measured for each of the six generations. Heritabilities of and genetic correlations between pupal mass and the date of adult emergence from diapause (the life‐history trait expected to have the largest influence on the timing of egg hatch, and thus larval development) were estimated from laboratory matings. In four of the six generations examined, significant directional selection attributed to the first trophic level was detected, always favoring early‐hatching cohorts predicted to experience higher leaf quality than late‐hatching cohorts. Directional phenotypic selection by the third trophic level was detected in only one of three years, and in that year the direction of selection was in opposite directions during the two successive generations. The combined effect of selection by both trophic levels indicated that the third trophic level acted to either reduce or enhance the more predictable pattern of selection attributed to the first trophic level. In addition, I found evidence of truncation selection acting to increase the mean and decrease the variance of pupal mass during the pupa‐adult transition in the laboratory. Pupal mass and diapause duration were found to vary significantly among full‐sibling families; upper bounds for heritability estimates were 0.57 and 0.30, respectively. Furthermore, these two traits were found to be positively genetically correlated (families with larger pupae had longer diapause durations), resulting in a fitness trade‐off, because larger pupae enjoy higher survival through metamorphosis and female fecundity but emerge later, when average leaf quality for offspring is generally poorer.  相似文献   

15.
Age at first (α) and last (ω) breeding are important life‐history traits; however, the direction and strength of selection detected on traits may vary depending on the fitness measure used. We provide the first estimates of lifetime breeding success (LBS) and λind (the population growth rate of an individual) of European badgers Meles meles, by genotyping 915 individuals, sampled over 18 years, for 22 microsatellites. Males are slightly larger than females, and the opportunity for selection was slightly greater for males, as predicted. λind and LBS both performed well in predicting the number of grand‐offspring, and both detected selection for a late ω, until the age of eight. Differential selection (Sα) for an early α, however, was only detected using LBS, not with λind. In declining populations (λind < 1) selection favours reproduction later in life, whereas early reproduction is selected in increasing populations (λind > 1). As 41% of badgers were assigned only one offspring (λind < 1), whereas 40% were assigned more than two (λind > 1), this cancelled out Sα measured by λind.  相似文献   

16.
The trade‐off between reproductive investment in early versus late life is central to life‐history theory. Despite abundant empirical evidence supporting different versions of this trade‐off, the specific trade‐off between age at first reproduction (AFR) and age at last reproduction (ALR) has received little attention, especially in long‐lived species with a pronounced reproductive senescence such as humans. Using genealogical data for a 19th‐century Swiss village, we (i) quantify natural selection acting on reproductive timing, (ii) estimate the underlying additive genetic (co)variances, and (iii) use these to predict evolutionary responses. Selection gradients were computed using multiple linear regression, and the additive genetic variance–covariance matrix was estimated using a restricted maximum‐likelihood animal model. We found strong selection for both an early AFR and a late ALR, which resulted from selection for an earlier and longer reproductive period (RP, i.e., ALR‐AFR). Furthermore, postponing AFR shortened RP in both sexes, but twice as much in women. Finally, AFR and ALR were strongly and positively genetically correlated, which led to a considerable reduction in the predicted responses to selection, or even rendered them maladaptive. These results provide evidence for strong genetic constraints underlying reproductive timing in humans, which may have contributed to the evolution of menopause.  相似文献   

17.
Pathogens and parasites can be strong agents of selection, and often exhibit some degree of genetic specificity for individual host strains. Here we show that this host–pathogen specificity can affect the evolution of host life history traits. All else equal, evolution should select for genes that increase individuals' reproduction rates or lifespans (and thus total reproduction per individual). Using a simple host–pathogen model, we show that when the genetic specificity of pathogen infection is low, host strains with higher reproduction rates or longer lifespans drive slower-reproducing or shorter-lived host strains to extinction, as one would expect. However, when pathogens exhibit specificity for host strains with different life history traits, the evolutionary advantages of these traits can be greatly diminished by pathogen-mediated selection. Given sufficient host–pathogen specificity, pathogen-mediated selection can maintain polymorphism in host traits that are correlated with pathogen resistance traits, despite large intrinsic fitness differences among host strains. These results have two important implications. First, selection on host life history traits will be weaker than expected, whenever host fitness is significantly affected by genotype-specific pathogen attack. Second, where polymorphism in host traits is maintained by pathogen-mediated selection, preserving the genetic diversity of host species may require preserving their pathogens as well. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
Stabilizing selection around a fixed phenotypic optimum is expected to disfavor sexual reproduction, since asexually reproducing organisms can maintain a higher fitness at equilibrium, while sex disrupts combinations of compensatory mutations. This conclusion rests on the assumption that mutational effects on phenotypic traits are unbiased, that is, mutation does not tend to push phenotypes in any particular direction. In this article, we consider a model of stabilizing selection acting on an arbitrary number of polygenic traits coded by bialellic loci, and show that mutational bias may greatly reduce the mean fitness of asexual populations compared with sexual ones in regimes where mutations have weak to moderate fitness effects. Indeed, mutation and drift tend to push the population mean phenotype away from the optimum, this effect being enhanced by the low effective population size of asexual populations. In a second part, we present results from individual‐based simulations showing that positive rates of sex are favored when mutational bias is present, while the population evolves toward complete asexuality in the absence of bias. We also present analytical (QLE) approximations for the selective forces acting on sex in terms of the effect of sex on the mean and variance in fitness among offspring.  相似文献   

19.
Oli MK  Armitage KB 《Oecologia》2003,136(4):543-550
Theoretical and empirical studies suggest that the age of first reproduction (the age at which reproduction begins) can have a substantial influence on population dynamics and individual fitness. Using complete survival and reproductive histories of 428 female yellow-bellied marmots (Marmota flaviventris) from a 40-year study (1962-2001), we investigated causes and fitness consequences of delayed maturity. Most females (86%) died without reproducing. The age of first reproduction of females that survived to reproduce at least once (n=60) ranged from 2 to 6 years. Females maturing later did not have a larger lifetime number of successful reproductive events or offspring production, nor did they experience improved survival. Females reproducing earlier had a higher fitness than those that delayed maturity. These results suggest that the net cost of early maturity was less than fitness benefits associated with early onset of reproduction, and that age of first reproduction in our study population is under substantial directional selection favoring early maturity. We conclude that female yellow-bellied marmots delay onset of reproduction not because of fitness benefits of foregoing reproduction at an earlier age, but due to the social suppression of reproduction by older, reproductive females, which enhances their own fitness to the detriment of the fitness of young females. Our results indicate that female yellow-bellied marmots that survive to reproduce may act to increase their own direct fitness, and that social suppression of reproduction of young females is a part of that strategy.  相似文献   

20.
In this article, I present evidence for a robust and quite general force of selection on the human life cycle. The force of selection acts in remarkably invariant ways on human life histories, despite a great abundance of demographic diversity. Human life histories are highly structured, with mortality and fertility changing substantially through the life cycle. This structure necessitates the use of structured population models to understand human life history evolution. Using such structured models, I find that the vital rates to which fitness is most sensitive are prereproductive survival probabilities, particularly the survival of children ages 0 to 4 years. The fact that the preponderance of selection falls on transitions related to recruitment combined with the late age at first reproduction characteristic of the human life cycle creates a fitness bottleneck out of recruitment. Because of this, antagonistic pleiotropy with any trait that detracts from the constituent transitions to recruitment is expected. I explore the predictors of variation in the force of selection on early survival. High fertility increases the selective premium placed on early survivorship, whereas high life expectancy at birth decreases it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号