首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The targets of limiting global warming levels below 2°C or even 1.5°C set by Paris Agreement heavily rely on bioenergy with carbon capture and storage (BECCS), which can remove carbon dioxide in the atmosphere and achieve net zero greenhouse gas (GHG) emission. Biomass and coal co‐firing with CCS is one of BECCS technologies, as well as a pathway to achieve low carbon transformation and upgrading through retrofitting coal power plants. However, few studies have considered co‐firing ratio of biomass to coal based on each specific coal power plant's characteristic information such as location, installed capacity, resources allocation, and logistic transportation. Therefore, there is a need to understand whether it is worth retrofitting any individual coal power plant for the benefit of GHG emission reduction. It is also important to understand which power plant is suitable for retrofit and the associated co‐firing ratio. In order to fulfill this gap, this paper develops a framework to solve these questions, which mainly include three steps. First, biomass resources are assessed at 1 km spatial resolution with the help of the Geography Information Science method. Second, by setting biomass collection points and linear program model, resource allocation and supply chain for each power plants are complete. Third, is by assessing the life‐cycle emission for each power plant. In this study, Hubei Province in China is taken as the research area and study case. The main conclusions are as follows: (a) biomass co‐firing ratio for each CCS coal power plant to achieve carbon neutral is between 40% and 50%; (b) lower co‐firing ratio sometimes may obtain better carbon emission reduction benefits; (c) even the same installed capacity power plants should consider differentiated retrofit strategy according to their own characteristic. Based on the results and analysis above, retrofit suggestions for each power plant are made in the discussion.  相似文献   

2.
The current or “conventional” paradigm for producing process energy in a biorefinery processing cellulosic biomass is on‐site energy recovery through combustion of residual solids and biogas generated by the process. Excess electricity is then exported, resulting in large greenhouse gas (GHG) credits. However, this approach will cause lifecycle GHG emissions of biofuels to increase as more renewable energy sources (wind, solar, etc.) participate in grid‐electricity generation, and the GHG credits from displacing fossil fuel decrease. To overcome this drawback, a decentralized (depot‐based) biorefinery can be integrated with a coal‐fired power plant near a large urban area. In an integrated, decentralized, depot‐based biorefinery (IDB), the residual solids are co‐fired with coal either in the adjacent power plant or in coal‐fired boilers elsewhere to displace coal. An IDB system does not rely on indirect GHG credits through grid‐electricity displacement. In an IDB system, biogas from the wastewater treatment facility is also upgraded to biomethane and used as a transportation biofuel. The GHG savings per unit of cropland in the IDB systems (2.7–2.9 MgCO2/ha) are 1.5–1.6 fold greater than those in a conventional centralized system (1.7–1.8 MgCO2/ha). Importantly, the biofuel selling price in the IDBs is lower by 28–30 cents per gasoline‐equivalent liter than in the conventional centralized system. Furthermore, the total capital investment per annual biofuel volume in the IDB is much lower (by ~80%) than that in the conventional centralized system. Therefore, utilization of biomethane and residual solids in the IDB systems leads to much lower biofuel selling prices and significantly greater GHG savings per unit of cropland participating in the biorefinery system compared to the conventional centralized biorefineries.  相似文献   

3.
A life cycle assessment (LCA) of various end‐of‐life management options for construction and demolition (C&D) debris was conducted using the U.S. Environmental Protection Agency's Municipal Solid Waste Decision Support Tool. A comparative LCA evaluated seven different management scenarios using the annual production of C&D debris in New Hampshire as the functional unit. Each scenario encompassed C&D debris transport, processing, separation, and recycling, as well as varying end‐of‐life management options for the C&D debris (e.g., combustion to generate electricity versus landfilling for the wood debris stream and recycling versus landfilling for the nonwood debris stream) and different bases for the electricity generation offsets (e.g., the northeastern U.S. power grid versus coal‐fired power generation). A sensitivity analysis was also conducted by varying the energy content of the C&D wood debris and by examining the impact of basing the energy offsets on electricity generated from various fossil fuels. The results include impacts for greenhouse gas (GHG) emissions, criteria air pollutants, ancillary solid waste production, and organic and inorganic constituents in water emissions. Scenarios with nonwood C&D debris recycling coupled with combustion of C&D wood debris to generate electricity had lower impacts than other scenarios. The nonwood C&D debris recycling scenarios where C&D wood debris was landfilled resulted in less overall impact than the scenarios where all C&D debris was landfilled. The lowest impact scenario included nonwood C&D debris recycling with local combustion of the C&D wood debris to generate electricity, providing a net gain in energy production of more than 7 trillion British thermal units (BTU) per year and a 130,000 tons per year reduction in GHG emissions. The sensitivity analysis revealed that for energy consumption, the model is sensitive to the energy content of the C&D wood debris but insensitive to the basis for the energy offset, and the opposite is true for GHG emissions.  相似文献   

4.
Solid waste life cycle modeling has predominantly focused on developed countries, but there are significant opportunities to assist developing and transition economies to minimize the environmental impact of solid waste management (SWM). Serbia is representative of a transition country and most (92%) of its waste is landfilled. As a Candidate European Union (EU) country, Serbia is expected to implement SWM strategies that meet EU directives. The Solid Waste Life‐Cycle Optimization Framework (SWOLF) was used to evaluate scenarios that meet EU goals by 2030. Scenarios included combinations of landfills, anaerobic digestion, composting, material recovery facilities (MRFs), waste‐to‐energy (WTE) combustion, and the use of refuse‐derived fuel in cement kilns. Each scenario was evaluated with and without separate collection of recyclables. Modeled impacts included cost, climate change, cumulative fossil energy demand, acidification, eutrophication, photochemical oxidation, total eco‐toxicity, and total human toxicity. Trade‐offs among the scenarios were evaluated because no scenario performed best in every category. In general, SWM strategies that incorporated processes that recover energy and recyclable materials performed well across categories, whereas scenarios that did not include energy recovery performed poorly. Emissions offsets attributable to energy recovery and reduced energy requirements associated with remanufacturing of recovered recyclables had the strongest influence on the results. The scenarios rankings were robust under parametric sensitivity analysis, except when the marginal electricity fuel source changed from coal to natural gas. Model results showed that the use of existing infrastructure, energy recovery, and efficient recovery of recyclables from mixed waste can reduce environmental emissions at relatively low cost.  相似文献   

5.
The leachability of metals from fly ash produced by a coal‐fired electric plant and a municipal waste incinerator under acidic conditions was experimentally investigated. The results of these column‐leaching experiments show that a decrease in the pH of the leachant favors the extraction of metal ions from solid particles of both coal combustion fly ash and municipal waste incinerator fly ash. The significant increase in the extraction of cadmium, chromium, zinc, lead, mercury, and silver ions from the ash is attributed to the instability of the mineral phases that contain these metals under acidic conditions.  相似文献   

6.
For the treatment of stage III/IV malignant melanoma (MM), a network meta‐analysis (NMA) was conducted to compare the short and long‐term efficacy of targeted therapy with single or double‐drug regimens. All conducted randomized controlled trials (RCTs) searched from PubMed and Cochrane Library were included in the study for direct and indirect comparison for MM. The odds ratio (OR) and surface under the cumulative ranking curves (SUCRA) value of the targeted therapy with single or double‐drug regimens for treatment of stage III/IV MM were also analyzed. To group the treatments according to their similarity with regards to both outcomes, cluster analyses were performed. Ultimately, 16 RCTs were incorporated for this NMA. The NMA revealed that the overall response rate (ORR) values of single‐drug regimens (Vemurafenib [Vem], Dabrafenib [Dab], and Nivolumab [Niv]) were higher than those of Dacarbazine (Dac). Also the ORR values of double‐drug regimens (Dab + Trametinib [Dab + Tra], Niv + Ipilimumab [Niv + Ipi], and Vem + Cobimetinib [Vem + Cob]) were moderately higher than those of Dac. The results of the SUCRA showed that short‐term efficacy of single‐drug regimens (Vem and Dab) were better, while the short‐term efficacy of double‐drug regimens (Dab + Tra and Vem + Cob) were relatively better. It was determined that Vem, Dab, and Niv might be the best choice in evaluating the treatment of stage III/IV MM among different single‐drug targeted therapy regimens, while Dab + Tra, Niv + Ipi, and Vem + Cob might have better short‐term efficacy among different double‐drug targeted therapy regimens. J. Cell. Biochem. 119: 640–649, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
The intercalation of lithium ions into graphite electrode is the key underlying mechanism of modern lithium‐ion batteries. However, co‐intercalation of lithium‐ions and solvent into graphite is considered undesirable because it can trigger the exfoliation of graphene layers and destroy the graphite crystal, resulting in poor cycle life. Here, it is demonstrated that the [lithium–solvent]+ intercalation does not necessarily cause exfoliation of the graphite electrode and can be remarkably reversible with appropriate solvent selection. First‐principles calculations suggest that the chemical compatibility of the graphite host and [lithium–solvent]+ complex ion strongly affects the reversibility of the co‐intercalation, and comparative experiments confirm this phenomenon. Moreover, it is revealed that [lithium–ether]+ co‐intercalation of natural graphite electrode enables much higher power capability than normal lithium intercalation, without the risk of lithium metal plating, with retention of ≈87% of the theoretical capacity at current density of 1 A g?1. This unusual high rate capability of the co‐intercalation is attributed to the (i) absence of the desolvation step, (ii) negligible formation of the solid–electrolyte interphase on graphite surface, and (iii) fast charge‐transfer kinetics. This work constitutes the first step toward the utilization of fast and reversible [lithium–solvent]+ complex ion intercalation chemistry in graphite for rechargeable battery technology.  相似文献   

8.

Purpose

The critical issue of waste management in Thailand has been rapidly increasing in almost all of the cities due to the economic growth and rising population that could double the amount of solid waste in landfill area. The alternative ways of waste treatment that have more efficiency and effectiveness in terms of energy, ecology, and resources become the key issue for each municipality to replace the old fashioned technology and be able to enhance the ability of solid waste problem management. Waste to energy is one of the favorable approaches to diminish the amount of waste to landfill and utilize waste for electricity. The aim of this study is to identify and quantify the life cycle impacts of the municipal solid waste (MSW) of Mae Hong Son municipality (MHSM), and the case study is the selected waste treatment technology of the Refuse-Derived Fuel (RDF) hybrid with 20 kW of Organic Rankine Cycle (ORC).

Methods

The functional unit is defined as 1 t of MSW. The energy, environment, and resource impacts were evaluated by using Life Cycle Assessment (LCA); ReCipe and Net Energy Consumption were referred to calculate the environmental impacts and the benefits of energy recovery of WtE technology. Exergetic LCA was used to analyze the resource consumption, especially land use change.

Results and discussion

The results indicated that the environmental impacts were comparatively high at the operation stage of RDF combustion. On the other hand, the production stage of RDF illustrated the highest energy consumption. The ORC power generation mainly consumed resources from material and energy used. The ORC system demonstrated better results in terms of energy and resource consumption when applied to waste management, especially the land required for landfill. Substitution of electricity production from ORC system was the contributor to the reduction of both energy and resource consumption. Installation of spray dry and fabric filter unit to RDF burner can reduce heavy metals and some pollutants leading to the reduction of most of the impacts such as climate change, human toxicity, and fossil depletion which are much lower than the conventional landfill.

Conclusions

LCA results revealed that the environmental impacts and energy consumption can be reduced by applying the RDF and ORC systems. The exergetic LCA is one of the appropriate tools used to evaluate the resource consumption of MSW. It is obviously proven that landfill contributed to higher impacts than WtE for waste management.
  相似文献   

9.
Life cycle assessment (LCA) is one of the most popular methods of technical‐environmental assessment for informing environmental policies, as, for instance, in municipal solid waste (MSW) management. Because MSW management involves many stakeholders with possibly conflicting interests, the implementation of an LCA‐based policy can, however, be blocked or delayed. A stakeholder assessment of future scenarios helps identify conflicting interests and anticipate barriers of sustainable MSW management systems. This article presents such an approach for Swiss waste glass‐packaging disposal, currently undergoing a policy review. In an online survey, stakeholders (N = 85) were asked to assess disposal scenarios showing different LCA‐based eco‐efficiencies with respect to their desirability and probability of occurrence. Scenarios with higher eco‐efficiency than the current system are more desirable and considered more probable than those with lower eco‐efficiency. A combination of inland recycling and downcycling to foam glass (insulation material) in Switzerland is desired by all stakeholders and is more eco‐efficient than the current system. In contrast, institutions of MSW management, such as national and regional environmental protection agencies, judge a scenario in which nearly all cullet would be recycled in the only Swiss glass‐packaging factory as more desirable than supply and demand stakeholders of waste glass‐packaging. Such a scenario involves a monopsony rejected by many municipalities and scrap traders. Such an assessment procedure can provide vital information guiding the formulation of environmental policies.  相似文献   

10.

Purpose

The aim of this research was to determine the optimum way of recovering energy from the biodegradable fractions of municipal waste. A part-life cycle study was carried out on the following wastes: paper, food waste, garden waste, wood, non-recyclable mixed municipal waste and refuse-derived fuel. The energy recovery processes considered were incineration, gasification, combustion in dedicated plant, anaerobic digestion and combustion in a cement kiln.

Methods

The life cycle assessment (LCA) was carried out using WRATE, an LCA tool designed specifically for waste management studies. Additional information on waste composition, waste collection and the performance of the energy recovery processes was obtained from a number of UK-based sources. The results take account of the energy displaced by the waste to energy processes and also the benefits obtained by the associated recycling of digestates, metals and aggregates as appropriate.

Results and discussion

For all the waste types considered the maximum benefits in terms of climate change and non-renewable resource depletion would be achieved by using the waste in a cement kiln as a substitute fuel for coal. When considering the impacts in terms of human toxicity, aquatic ecotoxicity, acidification and eutrophication, direct combustion with energy recovery was the best option. The results were found to be highly sensitive to the efficiency of the energy recovery process and the conventional fuel displaced by the recovered energy.

Conclusions and recommendations

This study has demonstrated that LCA can be used to determine the benefits and burdens associated with recovering energy from municipal waste fractions. However, the findings were restricted by the lack of reliable data on the performance of waste gasification and anaerobic digestion systems and on the burdens arising from collecting the wastes. It is recommended that further work is carried out to address these data gaps.  相似文献   

11.
Three‐dimensional (3D) printing and geo‐polymers are two environmentally oriented innovations in concrete manufacturing. The 3D printing of concrete components aims to reduce raw material consumption and waste generation. Geo‐polymer is being developed to replace ordinary Portland cement and reduce the carbon footprint of the binder in the concrete. The environmental performance of the combined use of the two innovations is evaluated through an ex‐ante life cycle assessment (LCA). First, an attributional LCA was implemented, using data collected from the manufacturer to identify the hotspots for environmental improvements. Then, scaled‐up scenarios were built in collaboration with the company stakeholder. These scenarios were compared with the existing production system to understand the potential advantages/disadvantages of the innovative system and to identify the potential directions for improvement. The results indicate that 3D printing can potentially lead to waste reduction. However, depending on its recipe, geo‐polymer likely has higher environmental impacts than ordinary concrete. The ex‐ante LCA suggests that after step‐by‐step improvements in the production and transportation of raw materials, 3D printing geo‐polymer concrete is able to reduce the carbon footprint of concrete components, while it does still perform worse on impact categories, such as depletion of abiotic resources and stratospheric ozone depletion. We found that the most effective way to lower the environmental impacts of 3D concrete is to reduce silicate in the recipe of the geo‐polymer. This approach is, however, challenging to realize by the company due to the locked‐in effect of the previous innovation investment. The case study shows that to support technological innovation ex‐ante LCA has to be implemented as early as possible in innovation to allow for maintaining technical flexibility and improving on the identified hotspots.  相似文献   

12.
Life‐cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost‐efficient, robust and environmentally‐friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale‐up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed‐batch (FB) and perfusion‐based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO2 than the FB process. Water consumption was the most important impact category, especially when scaling‐up the processes, as energy was required to produce process water and water‐for‐injection, while CO2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally‐friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324–1335, 2016  相似文献   

13.
14.
《Chirality》2017,29(11):726-736
Pyricularia grisea has been identified as a foliar pathogen on buffelgrass (Cenchrus ciliaris ) in North America and was studied as a potential source of phytotoxins for buffelgrass control. Two monosubstituted hex‐4‐ene‐2,3‐diols, named pyriculins A and B, were isolated from its culture filtrate organic extract together with (10S ,11S )‐(−)‐epipyriculol, trans ‐3,4‐dihydro‐3,4,8‐trihydroxy‐1(2H )‐napthalenone, and (4S )‐(+)‐isosclerone. Pyriculins A and B were characterized by spectroscopic (essentially nuclear magnetic resonance [NMR], High‐resolution electrospray ionization mass spectrometry [HRESIMS]) and chemical methods such as (4E )‐1‐(4‐hydroxy‐1,3‐dihydroisobenzofuran‐1‐yl)hex‐4‐ene‐2,3‐diols. The relative and absolute configuration of these compounds was determined by a combination of spectroscopic (NMR, electronic circular dichroism [ECD]) and computational tools. When bioassayed in a buffelgrass coleoptile and radicle elongation test, (10S ,11S )‐(−)‐epipyriculol proved to be the most toxic compound. Seed germination was much reduced and slowed with respect to the control and radicles failed to elongate. All five compounds delayed germination, but only (10S ,11S )‐(−)‐epipyriculol was able to prevent radicle development of buffelgrass seedlings. It had no effect on coleoptile elongation, while the other four compounds caused significantly increased coleoptile development relative to the control.  相似文献   

15.
The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high‐solids and thermophilic conditions in the presence of 1‐ethyl‐3‐methylimidazolium‐based ILs to enrich for IL‐tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL‐tolerant community was grown in liquid and solid‐state culture in the presence of the ILs 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]) or 1‐ethyl‐3‐methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL‐pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid‐state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL‐pretreated plant biomass. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:311–316, 2014  相似文献   

16.
A novel wide‐bandgap electron‐donating copolymer containing an electron‐deficient, difluorobenzotriazole building block with a siloxane‐terminated side chain is developed. The resulting polymer, poly{(4,8‐bis(4,5‐dihexylthiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐4,7‐di(thiophen‐2‐yl)‐5,6‐difluoro‐2‐(6‐(1,1,1,3,5,5,5‐heptamethyltri‐siloxan‐3‐yl)hexyl)‐2H‐benzo[d][1,2,3]triazole} (PBTA‐Si), is used to successfully fabricate high‐performance, ternary, all‐polymer solar cells (all‐PSCs) insensitive to the active layer thickness. An impressively high fill factor of ≈76% is achieved with various ternary‐blending ratios. The optimized all‐PSCs attain a power conversion efficiency (PCE) of 9.17% with an active layer thickness of 350 nm and maintain a PCE over 8% for thicknesses over 400 nm, which is the highest reported efficiency for thick all‐PSCs. These results can be attributed to efficient charge transfer, additional energy transfer, high and balanced charge transport, and weak recombination behavior in the photoactive layer. Moreover, the photoactive layers of the ternary all‐PSCs are processed in a nonhalogenated solvent, 2‐methyltetrahydrofuran, which greatly improves their compatibility with large‐scale manufacturing.  相似文献   

17.
The plant innate immune system employs plasma membrane‐localized receptors that specifically perceive pathogen/microbe‐associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern‐triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant‐associated bacteria. Here, we show that cyclic‐di‐GMP [bis‐(3′‐5′)‐cyclic di‐guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic‐di‐GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf‐5 inhibit flagellin synthesis and help the bacteria to evade FLS2‐mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic‐di‐GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic‐di‐GMP signalling on bacterial behaviour.  相似文献   

18.
A new series of 4‐hexyl‐4H‐thieno[3,2‐b]indole (HxTI) based organic chromophores is developed by structural engineering of the electron donor (D) group in the D–HxTI–benzothiadiazole‐phenyl‐acceptor platform with different fluorenyl moieties, such as unsubstituted fluorenyl (SGT‐146) and hexyloxy (SGT‐147), decyloxy (SGT‐148) and hexyloxy‐phenyl substituted (SGT‐149) fluorenyl moieties. In comparison to a reference dye SGT‐137 with a biphenyl‐based donor, the effects of the donating ability and bulkiness of the fluorenyl based donor in this D–π–A‐structured platform on molecular properties and photovoltaic performance are investigated to establish the structure–property relationship. The photovoltaic performance of dye‐sensitized solar cells (DSSCs) is improved according to the bulkiness of the donor groups. As a result, the DSSCs based on SGT‐149 show high power conversion efficiencies (PCEs) of 11.7% and 10.0% with a [Co(bpy)3]2+/3+ (bpy = 2,2′‐bipyridine) and an I?/I3? redox electrolyte, respectively. Notably, the co‐sensitization of SGT‐149 with a SGT‐021 porphyrin dye by utilizing a simple “cocktail” method, exhibit state‐of‐the‐art PCEs of 14.2% and 11.6% with a [Co(bpy)3]2+/3+ and an I?/I3? redox electrolyte, respectively.  相似文献   

19.
Question: Is the assumption of trait independence implied in Westoby's (1998) leaf‐height‐seed (LHS) ecology strategy scheme upheld in a Mediterranean grazing system dominated by annuals? Is the LHS approach applicable at the community level? Location: Northern Israel. Methods: LHS traits (specific leaf area [SLA], plant height and seed mass), and additional leaf traits (leaf dry matter content [LDMC], leaf area, and leaf content of nitrogen [LNC], carbon [LCC], and phosphorus [LPC]), were analyzed at the species and community levels. Treatments included manipulations of grazing intensity (moderate and heavy) and protection from grazing. We focused on species comprising 80% of biomass over all treatments, assuming that these species drive trait relationships and ecosystem processes. Results: At the species level, SLA and seed mass were negatively correlated, and plant height was positively correlated to LCC. SLA, seed mass, and LPC increased with protection from grazing. At the community level, redundancy analysis revealed one principal gradient of variation: SLA, correlated to grazing, versus seed mass and plant height, associated with protection from grazing. We divided community functional parameters into two groups according to grazing response: (1) plant height, seed mass, LDMC, and LCC, associated with protection from grazing, and (2) SLA, associated with grazing. Conclusions: The assumption of independence between LHS traits was not upheld at the species level in this Mediterranean grazing system. At the community level, the LHS approach captured most of the variation associated with protection from grazing, reflecting changes in dominance within the plant community.  相似文献   

20.
In this study we introduce the concept of total material requirement (TMR) to quantify the quality of materials from end‐of‐life buildings. The TMRs for the recycling of materials (urban ore TMR [UO‐TMR]) from four types of Japanese buildings ( Japanese traditional wooden structure [ JTWS], wooden frame with walls structure [ WFS ], reinforced‐concrete structure [RCS], and steel‐based structure [SS]) have been estimated and the trade‐off between the increase in function of recycled materials such as steel made from scrap and the additional inputs of energy and materials required to create the increase in function were evaluated. Steel made from scrap, aluminum made from scrap, and road material are assumed to be recycled from steel products, aluminum products, and aggregate and cement concrete in the buildings, respectively. Case study analyses were carried out to determine the effect of recycling only aboveground materials compared to recycling both aboveground and subsurface materials. Also, the effect of varying the recycling rate of wooden demolition debris is determined. The UO‐TMRs of steel made from scrap range from 4.7 kilograms per kilogram (kg/kg) to 18.2 kg/kg. Urban tailings (unrecycled components) account for the greatest proportion of the UO‐TMR of steel made from scrap, and the next largest contributor is the recycling process. In the case of aluminum made from scrap, the UO‐TMRs range from 22 to 196 kg/kg, with the contribution of urban tailings generally dominant, and the second largest contributor being on‐site demolition and shredding. The UO‐TMRs of recycled road material range from 1.04 to 1.16 kg/kg and are similar for different recycling cases and types of buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号