首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of photoperiod and temperature on the induction and termination of facultative pupal diapause in Helicoverpa armigera (Lepidoptera: Noctuidae) were investigated under laboratory conditions. Exposing H. armigera larvae to both constant and fluctuating temperature regimes with a mean of 25°C and 20°C resulted in a type-III photoperiodic response curve of a short-long day insect. The long-day critical daylengths for diapause induction were ten hours and 12 hours at the constant temperatures of 25°C and 20°C, respectively. Higher incidences of diapause and higher values both for the longer and the shorter critical photoperiods for diapause induction were observed at fluctuating regimes compared with the corresponding constant ones. At alternating temperatures, the incidence of diapause ranged from 4.2% to 33.3% and was determined by the temperature amplitude of the thermoperiod and by the interaction of cryophase or thermophase with the photoperiod. Helicoverpa armigera larvae seem to respond to photoperiodic stimuli at temperatures >15°C and <30°C; all insects entered diapause at a constant temperature of 15°C, whereas none did so at a constant temperature of 30°C under all the photoperiodic regimes examined. Although chilling was not a prerequisite for diapause termination, exposure of diapausing pupae to chilling conditions significantly accelerated diapause development and the time of adult emergence. Therefore, temperature may be the primary factor controlling the termination of diapause in H. armigera.  相似文献   

2.
Regulation of growth and development by photoperiod was studied in a population of the speckled wood butterfly, Purarge aegeria L. (Lepidoptera: Satyrinae), from southern Sweden. Individuals were reared in a range of photoperiodic regimes (9L. to 22L) and temperatures (13°C to 21° C). Plasticity was found for important life-history traits- generation time, growth rate and final weight and seasonal regulation of development in response to photoperiod was found to occur at two levels. Purarge aegeria hibernates as a third instar larva or in the pupal stage, cantering one of four major developmental pathways in response to photoperiod: (1) direct development in both the larval and pupal stages, (2) pupal winter diapause with or (3) without a preceding larval summer diapause, or (4) larval winter diapause. In addition to this high-level regulation of individual development, larval growth rate and pupal development rate also appear to be finally regulated by photoperiod within each major pathway. As photoperiods decreased from 22 h to 17 h at 17° C, growth rate among directly developing larvae increased progressively, as was the case for larva? developing according to a univoltine life cycle from 17 h to 14 h. At two photoperiods, 13 h and 16 h (corresponding to shifts between major pathways), both larval and pupal development were extremely variable with the fastest individuals developing directly and the slowest developing with a diapause. This indicates a gradual nature of diapause itself, suggesting that the two level may not he fundamentally different.  相似文献   

3.
Facultative diapause, a strategy that allows insects to initiate additional generations when conditions are favorable or to enter diapause when they are not, has a profound effect on the ecology and evolution of species. Most previous studies have concentrated on the role of photoperiod and temperature in inducing facultative diapause in insects. In contrast, here we studied pupal diapause mediated by larval host plants in the cotton bollworm Helicoverpa armigera, and confirmed that pupal weight is a critical factor. Two groups of third instar H. armigera larvae, kept at 25 °C with L:D = 8:16 and 20 °C with photoperiod of L:D = 8:16, respectively, were fed on six host plants and on artificial diet (as a control) to determine how larval host plants affect diapause incidence and related traits (such as pupal weight and developmental duration). The data showed larval host plants affected diapause incidence significantly and the effects could be masked by low temperature. Further analysis showed that pupal size, not the length of the sensitive stage, affected the decision to enter diapause. In a further experiment, third-instar to final-stage larvae deprived of artificial diet for 2 days demonstrated a direct relationship between pupal weight and diapause incidence. These results suggest that larval host plants, by affecting pupal size, may influence diapause occurrence in H. armigera. This has important adaptive significance for both over-wintering survival and the possibility for completing an additional generation.  相似文献   

4.
Comparison of biological characteristics between diapausing and non‐diapausing strains of insects provides some insights into the mechanisms regulating diapause. In this study, biological characteristics, especially diapause characteristics and life‐history traits, of a non‐photoperiodic‐diapause (NPD) strain of the cabbage beetle Colaphellus bowringi were compared with those of a normal, high‐diapause (HD) strain that enters diapause in response to either long day length or low temperature. The NPD strain did not enter diapause at any photoperiod at 22°C or higher, but still had a capacity to enter diapause at low temperatures. Although diapause could be induced in both strains by exposure to 20°C, the proportion of individuals having shorter diapause duration was greater in the NPD strain compared to the HD strain. The NPD strain had significantly lower hatching and larval survival rates, longer developmental duration of immature stages, smaller body size and lower longevity and female fecundity compared to the HD strain. The NPD strain of this species is a promising model for investigating diapause regulation in insects in general.  相似文献   

5.
Variation in the incidence of diapause in local populations of Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae) was examined in relation to changes in photoperiod and/or temperature during the larval period. Temperate zone populations of H. assulta, a native species in temperate Japan, showed a high incidence of diapause induction when only the photoperiod was decreased during the larval period, even at favorable temperatures. This photoperiod‐dependent response may allow H. assulta to foresee the beginning of autumn well in advance in the temperate zone, where temperature conditions are severe. In contrast, temperate zone populations of H. armigera, an invasive and polyphagous species mainly distributed in the subtropics, showed a high incidence of diapause only when both photoperiod and temperature decreased, whereas subtropical populations showed a very low incidence of diapause under the same conditions. Furthermore, both temperate zone and subtropical populations of H. armigera enter diapause under constant low temperatures at short‐day photoperiod. Thus, there is geographic variation in sensitivity to diapause‐inducing stimuli (changes in photoperiod and temperature) in H. armigera. This variation may be a part of the climatic adaptation achieved by H. armigera in Japan.  相似文献   

6.
在预蛹期,高温处理能诱导棉铃虫蛹进入夏滞育。本实验着重就33~39℃的变温下滞育蛹和未滞育蛹的失重动态进行了对比研究,同时以常温(27℃)下蛹作为参照。研究发现: 在33~39℃的变温条件下,棉铃虫化蛹率显著低于其在常温下的化蛹率,且所化蛹中有63.2%的雄性和10.9%的雌性进入高温夏滞育,其中高温滞育蛹和未滞育蛹分别都轻于正常发育蛹。化蛹后第2日至第5日期间,高温滞育蛹失重量显著低于高温未滞育蛹和正常发育蛹的失重量,分别为3.62、13.30和5.49 mg;蛹期总失重量结果与化蛹后第2~5日间蛹失重量趋势一致,高温滞育蛹、未滞育蛹和正常发育蛹失重量分别为15.60、49.35和26.30 mg。蛹失重动态研究发现高温滞育蛹在夏滞育期间其失重曲线平缓,显著低于高温未滞育蛹和正常发育蛹;高温滞育蛹滞育解除后,其失重曲线与正常发育蛹的失重趋势基本一致。结果表明,棉铃虫夏滞育蛹能通过维持低的代谢水平来度过不利环境,具有一定的生态适应意义。  相似文献   

7.
The bruchid beetle, Bruchidius dorsalis Fahraeus (Coleoptera: Bruchidae), has a multivoltine life cycle and shows geographical variation of overwintering stages in Japan. Our previous study found that B. dorsalis enters larval diapause in the final instar under short photoperiods. In cooler areas, we observed that most individuals overwinter in the final larval stage in diapause, whereas beetles at different developmental stages (non‐diapausing young instars, diapausing instars, and adults) were overwintering in warmer areas. In this study, we investigated geographical variation in the photoperiodic response for induction of larval diapause at 20 °C (three populations) and 24 °C (two populations) to clarify the overwintering strategy of B. dorsalis. We observed that (1) diapause incidence at 20 °C changed sharply from ca. 100% to 0% with a change in photoperiod in all the populations, (2) critical photoperiod was longer at 20 °C in populations from cooler areas, and (3) critical photoperiod at 24 °C was shorter than at 20 °C and a fraction of the larvae did not enter diapause, even under short photoperiods. Overwintering stages estimated from these results were consistent with those actually observed in the field. This study indicates that the geographical variation of overwintering stages is likely to reflect adaptive diapause induction in each local environment.  相似文献   

8.
Abstract. The grape berry moth, Lobesia botrana Denn. & Sciff. (Lepidoptera: Tortricidae), one of the most injurious pest of grape berries in Greece, is a multivoltine species that overwinters as diapausing pupae. The effects of several diel and non-diel photoperiods and of temperature, experienced by eggs and larvae, on pupal diapause induction were investigated. The diapause response curve was of Type I (long day type) and the determining factor was the duration of scotophase (> 11 h), regardless of the duration of photophase. However, at very short (< 4 h) photoperiods, the incidence of diapause was also high. Diapause was positively and significantly correlated with the egg-larval developmental time, pupal mortality and the duration of the pupal stage. Eggs and larvae reared under LD 12 : 12 h photoperiod and various temperatures (from 12 to 30 °C) produced diapausing pupae (almost 100%), but the duration of the pupal stage (intensity of diapause) increased with increasing temperature. Under continuous darkness, however, the percentage diapause decreased with increasing temperature. Single and double 1-h light pulses were applied systematically at various times during the scotophase of six diapause-inducing diel photoperiods. Two photosensitive points in time (called A and B) were revealed, during which illumination resulted in a significant decrease of diapause induction. The decrease was much greater during the first sensitive period (early in scotophase) rather than in the second (late in the scotophase).  相似文献   

9.
Abstract The bruchid beetle Bruchidius dorsalis Fahraeus (Coleoptera: Bruchidae) has been known to undergo larval diapause during the final instar under short photoperiods ( Kurota & Shimada, 2001 ). This species has a multivoltine life cycle and the overwintering stages show a geographical variation across Japan ( Kurota & Shimada, 2002 ). In cooler areas, overwintering occurs during the final instar, whereas in warmer climates overwintering can occur during several developmental stages: non‐diapausing young instars, diapausing instars, and adults. In this study, we investigated the adult reproductive diapause in three populations from different geographical regions to clarify the role of geographical variation on overwintering strategies. We found that: (1) B. dorsalis entered reproductive diapause in addition to larval diapause under short photoperiods, (2) diapause propensity was higher and the critical photoperiod was longer in populations from cooler regions, and (3) the sensitive photoperiod range was the first 5 days after emergence. Predictions of the overwintering stage, derived from critical photoperiods, were consistent with actual overwintering stages observed in each population. The geographical variation in diapause induction is likely to reflect the adaptive overwintering strategy in each local environment.  相似文献   

10.
The seasonal life cycle of the cabbage butterfly, Pieris melete is complicated because there are three options for pupal development: summer diapause, winter diapause, and nondiapause. In the present study, we tested the influence of temperature, day length, and seasonality on the expression of alternative developmental pathways and compared the differences in life history traits between diapausing and directly developing individuals under laboratory and field conditions. The expression of developmental pathway strongly depended on temperature, day length, and seasonality. Low temperatures induced almost all individuals to enter diapause regardless of day length; relatively high temperatures combined with intermediate and longer day lengths resulted in most individuals developing without diapause in the laboratory. The field data revealed that the degree of phenotypic plasticity in relation to developmental pathway was much higher in autumn than in spring. Directly developing individuals showed shorter development times and higher growth rates than did diapausing individuals. The pupal and adult weights for both diapausing and directly developing individuals gradually decreased as rearing temperature increased, with the diapausing individuals being slightly heavier than the directly developing individuals at each temperature. Female body weight was slightly lower than male body weight. The proportional weight losses from pupa to adult were almost the same in diapausing individuals and in directly developing individuals, suggesting that diapause did not affect weight loss at metamorphosis. Our results highlight the importance of the expression of alternative developmental pathways, which not only synchronizes this butterfly's development and reproduction with the growth seasons of the host plants but also exhibits the bet‐hedging tactic against unpredictable risks due to a dynamic environment.  相似文献   

11.
The post-embryonic development of Pieris brassicae can either be continuous (under a long photoperiod) or interrupted at the pupal stage (induced by a short photoperiod); this phenomenon is termed facultative diapause. Several studies have indicated that certain brain mechanisms could be directly involved in the perception of variations in the photoperiod and could mediate some physiological effects particular to dormancy. Biogenic amines have been particularly implicated in the response to photoperiod variations and also in the regulation of development, especially in diapause induction and termination. High performance liquid chromatography with dual electrochemical detection has therefore been used to measure several biogenic amines in pupal nervous tissues at various stages of nondiapausing and diapausing development. During direct development, the levels of dopamine (DA) and N-acetyldopamine (NADA: a DA metabolite) in brain were relatively high in 3-day-old pupae and at the end of pupal life (on the 8th day). Dihydroxyphenylacetic acid (another metabolite of DA) showed no variation. Serotonin was mainly observed in 2–3-day-old pupae but 5-hydroxyindoleacetic acid was never detected. In young diapausing insects, similar variations of DA levels were observed even though a slight decrease of DA metabolites was noted. Serotonin appeared somewhat later (4–5 days) and attained higher levels. In late diapausing pupae, a marked increase in DA levels was observed, especially when pupae were kept at low temperature (4°C). During diapause, serotonin levels were reduced or even absent.  相似文献   

12.
The role of photoperiod and temperature in the induction of overwintering diapause inPhyllonorycter blancardella (F.) (Lepidoptera: Gracillariidae) was examined in the laboratory and field using leafminers from commercial apple orchards in Ontario, Canada.P. blancardella exhibited a long-day response to photoperiod: long daylengths resulted in uninterrupted development whereas short daylengths induced diapause. The estimated critical photoperiod for diapause induction was L14.25∶D9.75. The larvae of leafminers destined to enter diapause took ca. 3× longer to complete development than the larvae of non-diapausing leafminers. The development prolonging effect of photoperiod decreased with decreasing daylength. Temperature modified the diapause inducing effect of photoperiod. At L14.25∶D9.75, diapause incidence was similar at 15 and 20°C but was lower at 25°C. Photoperiod also altered the normal relationship between development rate and temperature. At L14.25∶D9.75, the duration of larval development of diapausing leafminers was similar at 15, 20 and 25°C. Temperature alone is unlikely to have a role in the induction of diapause because leafminers exposed to natural late summer and fall temperature regimes and L16∶D8 did not enter diapause.  相似文献   

13.
ABSTRACT. Supercooling points (SCP) and low temperature tolerance were determined for larval, pupal and adult stages of Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). No stage tolerates tissue-freezing. Ontogenetic changes in SCP profiles are similar for comparable developmental stages of diapause and non-diapause groups. Feeding larvae have SCPs near -7°C which decrease to -11°C in the postfeeding wandering phase of the final larval instar. The lowest SCPs are recorded for pupae at -23°C. The capacity to survive at -17°C varies with age of the diapausing pupae: 10-day-old pupae are less cold tolerant than pupae that have been in diapause for 45–80 days. Although the SCP of non-diapausing pupae is as low as in diapausing pupae, non-diapausing pupae are extremely sensitive to low temperature exposure and do not survive to adult eclosion when exposed to -17°C for as little as 20 min. The use of hexane to break pupal diapause has no effect on SCPs or low temperature tolerance.  相似文献   

14.
ABSTRACT.
  • 1 There are significant differences in the effects of larval photo-period on diapause and pupal colour among the species Papilio polyxenes Fabr., P.troilus L., Battus philenor (L.) and Eurytides marcellus (Cramer).
  • 2 Diapause and pupal colour in P.polyxenes and P.troilus are strongly influenced by larval photoperiod, short photophase eliciting brown diapausing pupae. Photoperiods of 15L:9D permit the expression of the green and brown pupal colour alternatives.
  • 3 Pupal colour in B.philenor and E.marcellus is not affected by larval photoperiod, but short photophase induces diapause in these species.
  • 4 All species except B.philenor show an association between brown pupal colour and diapause: Emarcellus when reared on long (midsummer) photophase, P.polyxenes and P.troilus when reared on short (autumnal) photophase.
  • 5 In P.polyxenes, short photophase can affect pupal colour responses directly, whether the individual enters diapause or not.
  • 6 Differences among the species are related to differences in the ecology of their natural pupation sites.
  相似文献   

15.
Field and laboratory studies were carried out between 1995 and 1997 on four populations of Diaptomus leptopus found in seasonally temporary, occasionally temporary, and a permanent environment to assess the relative importance of photoperiod and temperature regimes versus other proximate local cues in inducing diapause egg production. Patterns of diapausing and subitaneous egg production were determined by observation of individual females bearing clutches that were produced in the field. A laboratory common-garden experiment was performed to assess the effects of four different regimes of temperature and photoperiod on the induction of diapause. Patterns of diapausing egg production differed among ponds: diapause occurred early in the seasonally temporary environment and occurred rarely in the permanent environment. In the common-garden experiment, populations exhibited substantial changes in the onset of diapause when compared to patterns found under field conditions. These results provide indirect evidence that the different populations respond to available cues of environmental change in different ways in nature, or that environmental cues vary among habitats.  相似文献   

16.
Summary The developmental rate, critical photoperiod, and diapause intensity were determined for three populations of the southwestern corn borer, Diatraea grandiosella, from Missouri, Mississippi and Kansas. Mississippi larvae grew at the highest rate and Missouri larvae grew at the lowest rate. The zero developmental temperatures (°C) for the Missouri population were estimated from regression lines as follows: 10.5° (eggs), 10.8° (diapausing larvae), 13.3° (non-diapausing larvae) and 11.4° (pupae). The required heat units were: 85° (eggs), 588° (diapausing larvae), 333° (non-diapausing larvae) and 149° days (pupae). However, the observed low temperature limit for larval growth under constant temperature regimes was approximately 17°C.The critical day lengths for diapause induction observed at 25°C were: 15 h 11 min (Missouri); 15 h 20 min (Mississippi); and 15 h 22 min (Kansas). The photoperiodic response of the Mississippi larvae was more or less retained at 30°C, whereas the response of the Missouri larvae was completely suppressed at this temperature. Diapause was most easily terminated in the Kansas larvae. The most intense diapause was observed in the Mississippi larvae.Model seasonal life cycles of the three geographic populations were constructed using photothermograms. Although the models showed good agreement with the field situation for the Missouri and the Kansas populations, some unknown factor(s) remains to account for an extremely long critical photoperiod in the Mississippi population.Contribution from the Missouri Agricultural Experiment Station, as journal series no. 9001  相似文献   

17.
Larvae of wild type (WT) strain of Chymomyza costata Zetterstedt (Diptera: Drosophilidae) enter diapause (stop developing) in response to short‐day signal at a constant 18 °C, whereas larvae of a non‐photoperiodic‐diapause (NPD) strain do not respond to photoperiodic signalling and continue in larval development irrespective of daylength. The present study shows that WT larvae also respond reliably to thermoperiodic signalling (daily cycles of temperature) under constant darkness, whereas the NPD larvae do not, suggesting that the pathways transducing the environmental token stimuli (photoperiod and thermoperiod) onto the diapause developmental programme might merge functionally in the central biological clock system known to be mutated in NPD strain. Temperature and larval population density modify the output of token stimuli signalling. High temperatures (>24 °C) tend to avert, whereas low temperatures (<18 °C), especially in combination with constant darkness, stimulate diapause induction in WT strain. Overcrowding (>200 larvae per 5 g of larval diet) lengthens the duration of larval development and induces a ‘diapause‐like’ developmental arrest of relatively weak intensity in up to 60% of larvae of both strains. At high temperatures (>30 °C), all WT larvae continue direct development but subsequently die during the pupal stage. Low temperature exposure (<12 °C) causes quiescence in the majority of the larvae of both strains. Starvation blocks development and causes mortality when applied in larvae younger than day 3 of the third instar. Older larvae survive starvation and their photoperiodically‐induced developmental pre‐programming is not affected. Collectively, the results show that diapause induction in C. costata is a result of various interacting effects of multiple environmental factors.  相似文献   

18.
Abstract:  Diapause was induced in a Central European population of Ips typographus grown at 20°C when the day length decreased below 16 h [50% diapause incidence occurred in the 14.7:9.3 h L:D (light:dark) regime]. The non-diapausing adults fed on days 2–6 and 10–14 after the ecdysis and swarmed after the second feeding bout with chorionated eggs in the ovaries and sperm in the spermiducts. Neither gonads nor the flight muscles matured and no swarming occurred in the diapausing adults. The development from egg to adult took about 34 days in both 18:6 h (no diapause) and 12:12 h L:D (diapause) regimes, but it was extended by up to 30% without diapause induction when only larvae or pupae were exposed to L:D 12:12 h. Diapause was induced in insects reared at L:D 12:12 h through the last larval and the pupal instars and/or in the adult stage. Temperature ≥ 23°C prevented diapause induction at L:D 12:12 h but diapause occurred at L:D 14:10 h associated with 26:6°C thermoperiod. The effect of thermoperiods on the developmental rate requires further research. Exposure of the non-diapausing adults to 5°C for several days blocked feeding and evoked a diapause-like state, whereas diapausing adults fed and their gonads slowly developed at this temperature. Diapausing adults exposed in forest to low night temperatures and transferred in October to 20°C readily reproduced at 18:6, but not 12:12 h L:D photoperiods. After 2-months at 5°C and darkness, they became insensitive to the photoperiod, matured and most of them also swarmed at 20°C in the 12:12 h L:D regime. In a Scandinavian population, diapause occurred at 18:6 h L:D and was terminated either by exposure to 5°C or by very long photoperiod (L:D 20:4 h) combined with high temperature (23°C).  相似文献   

19.
M. Bouletreau  J. David 《BioControl》1967,12(2):187-197
Summary The parasitoid waspPteromalus puparum was reared for many generations under controlled laboratory conditions: larval development in diapausing pupae ofPieris brassicae, 14 hours photoperiod, temperature of 21 °C or 25 °C. The fluctuations in the density of population appear to be the main source of variation for larval development. An increase in the number of larvae living in the same host pupa results in a decrease of adult size, a reduction of developmental time and a diminution of incidence of larval diapause. According to these results, it appears that a high population density hastens the occurrence of metamorphosis and makes it easier. It is suggested that various nervous stimulations, such as food shortage and interactions between larvae, may induce the onset of neurosecretion by the brain.   相似文献   

20.
Sensitivity to the daily photoperiod, particularly with respect to pupal diapause induction, was studied during ovarian, embryonic, and larval development of the flesh flySarcophaga argyrostoma. Large flies were shown to have a greater number of primary follicles in their ovaries and to be capable of limited ovarian maturation in the absence of exogenous protein (autogeny). Such ovarian development occurred independently of photoperiod. However, long days experienced during embryogenesis caused more rapid development, and earlier larviposition, than short days. Short days during embryonic and subsequent larval development also induced pupal diapause, whereas long days led to continuous or non-diapause development of the pupae. Pupal diapause could not be induced by photoperiods during the vitellogenic phase of ovarian development. InSarcophaga argyrostoma, a maternal effect preventing pupal diapause among the progeny of files with a diapause history was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号