首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nuclear18S rDNA phylogeny for cryptomonad algae is presented, including 11 species yet to be investigated by molecular means. The phylogenetic positions of the cryptomonad genera Campylomonas and Plagioselmis are assessed for the first time. Campylomonas groups most closely with morphologically similar species with the same accessory pigment from the genus Cryptomonas. Plagioselmis groups with the genera Teleaulax and Geminigera forming a clade whose members are united by unusual thylakoid arrangement. Nuclear 18S rDNA phylogeny divides cryptomonads into seven major lineages, two of which consist of the monospecific genera Proteomonas and Falcomonas. Analysis of nuclear18S rDNA sequence supports suggestions that a Falcomonas‐like cryptomonad gave rise to all other blue‐green cryptomonads. New sequence from the plastid‐lacking cryptomonad genus Goniomonas is also included, and the order of divergence of the major cryptomonad lineages is discussed. The morphology, number, and pigmentation of the cryptomonad plastidial complex are congruent with nuclear 18S rDNA phylogenies. Host cell features, such as periplast type, furrow/gullet system, and cell shape, can be more variable and may be markedly different in species that are closely related by nuclear 18S rDNA phylogeny. Conversely, some species that are not closely related by molecular phylogeny may display a very similar, possibly primitive, periplast and furrow morphology.  相似文献   

2.
3.
The ancestral kareniacean dinoflagellate has undergone tertiary endosymbiosis, in which the original plastid is replaced by a haptophyte endosymbiont. During this plastid replacement, the endosymbiont genes were most likely flowed into the host dinoflagellate genome (endosymbiotic gene transfer or EGT). Such EGT may have generated the redundancy of functionally homologous genes in the host genome—one has resided in the host genome prior to the haptophyte endosymbiosis, while the other transferred from the endosymbiont genome. However, it remains to be well understood how evolutionarily distinct but functionally homologous genes were dealt in the dinoflagellate genomes bearing haptophyte‐derived plastids. To model the gene evolution after EGT in plastid replacement, we here compared the characteristics of the two evolutionally distinct genes encoding plastid‐type glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) in Karenia brevis and K. mikimotoi bearing haptophyte‐derived tertiary plastids: “gapC1h” acquired from the haptophyte endosymbiont and “gapC1p” inherited from the ancestral dinoflagellate. Our experiments consistently and clearly demonstrated that, in the two species examined, the principal plastid‐type GAPDH is encoded by gapC1h rather than gapC1p. We here propose an evolutionary scheme resolving the EGT‐derived redundancy of genes involved in plastid function and maintenance in the nuclear genomes of dinoflagellates that have undergone plastid replacements. Although K. brevis and K. mikimotoi are closely related to each other, the statuses of the two evolutionarily distinct gapC1 genes in the two Karenia species correspond to different steps in the proposed scheme.  相似文献   

4.
Aristolochia bhamoensis from Myanmar is here described and illustrated. This new species is morphologically similar to A. faviogonzalezii (confined to northern Vietnam) and A. cathcartii (growing in the Himalayan region) but is distinguished from the latter two species by having a cream‐white upper part of the perianth tube, with visible purple ridges, a trumpet‐shaped limb, 5.0–5.5 cm diameter, inner surface of limb lobes densely covered with dark‐purple bristles, a nearly circular mouth, 3.2–3.5 cm wide, upper half of throat being dark‐purple to blackish, without striations or dots, and lower half purple, with conspicuous white striation. Morphological characters such as a 3‐lobed gynostemium and a 3‐lobed limb support a placement of the new species in the subgenus Siphisia. A diagnostic key is provided to the seven Siphisia species known from Myanmar.  相似文献   

5.
6.
7.
8.
The Australasian‐Pacific and South‐East Asian species of the new orb‐weaving spider genus Plebs with Plebs eburnus (Keyserling, 1886) as type species are revised. Following this study, Plebs includes a total of 22 species of which seven are here described new. Seven species are found in Australia, two in the Pacific region (New Caledonia, Vanuatu), and two in South‐East Asia (Papua New Guinea, The Philippines). Eleven Asian species are transferred to the new genus. Plebs represent comparatively small orb‐weaving spiders of c. 1.2–15.0 mm body length with a slightly elongated abdomen and humeral (shoulder) humps. Males of most species have two to three stout setae on the ventral side of their fourth coxae. Male pedipalps are characterized by the presence of a single macroseta on the patella, the presence of a paramedian apophysis as basal extension of the conductor, and an apical tegular protrusion. The female epigyne has a scape that is generally much longer than wide. It does not have a terminal pocket and is frequently broken off in a number of species. A phylogenetic analysis of 15 species of Plebs (those for which both sexes are known), 13 Australian/Pacific orb‐weaving spider species representing the most commonly collected clades with paramedian apophysis, three species of Nearctic Eriophora Simon, 1864, and Araneus diadematus Clerck, 1758, as outgroup, identified a single synapomorphy of Plebs based on 35 morphological and three behavioural characters: a distinct, inverted U‐shaped light pattern on the ventral side of the abdomen with two additional white spots anterolateral to the spinnerets. This analysis recovered a monophyletic clade of all Asian Plebs, suggesting a single colonization event of the genus that putatively originated in Australia. Most Plebs species appear to be active during the day. They build a regular orb‐web with vertical stabilimentum in grass and low shrubs. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 279–341.  相似文献   

9.
10.
The relationship between phylogeny and nucleomorph genome size was examined in 16 strains of cryptomonad algae using pulsed‐field gel electrophoresis, Southern hybridization and phylogenetic analyses. Our results suggest that all cryptomonads examined in this study contain three nucleomorph chromosomes and their total genome size ranges from 495 to 750 kb. In addition, we estimated the plastid genome size of the respective organisms. The plastid genomes of photosynthetic strains were approximately 120–160 kb in size, whereas the non‐photosynthetic Cryptomonas paramecium NIES715 possesses a genome of approximately 70 kb. Phylogenetic analysis of the nuclear small subunit ribosomal DNA (SSU rDNA) gene showed that nucleomorph genome size varies considerably within closely related strains. This result indicates that the reduction of nucleomorph genomes is a rapid phenomenon that occurred multiple times independently during cryptomonad evolution. The nucleomorph genome sizes of Cryptomonas rostratiformis NIES277 appeared to be approximately 495 kb. This is smaller than that of Guillardia theta CCMP327, which until now was thought to have the smallest known nucleomorph genome size among photosynthetic cryptomonads.  相似文献   

11.
Most species of freshwater mussels (Unionoida) show a wide variability in shell form and size but an understanding of which factors determine unionoid morphology is poor. We identified ecophenotypic trends in shell and internal characters within three unionoid species from two habitat types (marinas and river) of the River Thames, UK, using traditional and modern morphometric techniques. In marinas, all species grew to larger maximum sizes than in the river, which might be a result of higher temperatures and phytoplankton densities in marinas. Unio pictorum in marinas was more elongated than in the river and Fourier shape analysis revealed a trend from dorsally arched river specimens to straight dorsal and pointed posterior margins in marina individuals. The degree of shell elongation and shape of dorso‐posterior margin were not associated with sediment composition, but were associated with the different hydrological characters of the two habitat types. Relative shell width was a poor indicator of collection site and influenced by allometric growth. Unlike U. pictorum, a difference in shell elongation of marina and river mussels could not be detected in Unio tumidus and Anodonta anatina. However, all three species showed the same trends regarding the shape of the dorso‐posterior shell margin. This shell character may thus have broad ecological significance and could have considerable utility to palaeontologists, taxonomists, and conservation biologists. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 814–825.  相似文献   

12.
Fumana is a diverse genus of the Cistaceae family, consisting of 21 currently accepted species. In this study, nuclear (ITS) and plastid (matK, trnT‐L) molecular markers were used to reconstruct the phylogeny and to estimate divergence times, including 19 species of Fumana. Phylogenetic analyses (Bayesian Inference, Maximum Parsimony and Maximum Likelihood) confirmed the monophyly of Fumana and did not support the infrageneric divisions previously established. The results support four main clades that group species that differ in vegetative and reproductive characters. Given the impossibility to define morphological characters common to all species within the clades, our proposal is to reject infrageneric divisions. Molecular dating and ancestral area analyses provide evidence for a Miocene diversification of the genus in the north‐western Mediterranean. Ancestral state reconstructions revealed ancestral character states for some traits related to xeric and arid habitats, suggesting a preadaptation to the Mediterranean climate.  相似文献   

13.
Selectable marker genes (SMGs) are necessary for selection of transgenic plants. However, once stable transformants have been identified, the marker gene is no longer needed. In this study, we demonstrate the use of the small serine recombination systems, ParA‐MRS and CinH‐RS2, to precisely excise a marker gene from the plastid genome of tobacco. Transplastomic plants transformed with the pTCH‐MRS and pTCH‐RS2 vectors, containing the visual reporter gene DsRed flanked by directly oriented MRS and RS2 recognition sites, respectively, were crossed with nuclear‐genome transformed tobacco plants expressing plastid‐targeted ParA and CinH recombinases, respectively. One hundred per cent of both types of F1 hybrids exhibited excision of the DsRed marker gene. PCR and Southern blot analyses of DNA from F2 plants showed that approximately 30% (CinH‐RS2) or 40% (ParA‐MRS) had lost the recombinase genes by segregation. The postexcision transformed plastid genomes were stable and the excision events heritable. The ParA‐MRS and CinH‐RS2 recombination systems will be useful tools for site‐specific manipulation of the plastid genome and for generating marker‐free plants, an essential step for reuse of SMG and for addressing concerns about the presence of antibiotic resistance genes in transgenic plants.  相似文献   

14.
Photosynthetic euglenids acquired chloroplasts by secondary endosymbiosis, which resulted in changes to their mode of nutrition and affected the evolution of their morphological characters. Mapping morphological characters onto a reliable molecular tree could elucidate major trends of those changes. We analyzed nucleotide sequence data from regions of three nuclear‐encoded genes (nSSU, nLSU, hsp90), one chloroplast‐encoded gene (cpSSU) and one nuclear‐encoded chloroplast gene (psbO) to estimate phylogenetic relationships among 59 photosynthetic euglenid species. Our results were consistent with previous works; most genera were monophyletic, except for the polyphyletic genus Euglena, and the paraphyletic genus Phacus. We also analyzed character evolution in photosynthetic euglenids using our phylogenetic tree and eight morphological traits commonly used for generic and species diagnoses, including: characters corresponding to well‐defined clades, apomorphies like presence of lorica and mucilaginous stalks, and homoplastic characters like rigid cells and presence of large paramylon grains. This research indicated that pyrenoids were lost twice during the evolution of phototrophic euglenids, and that mucocysts, which only occur in the genus Euglena, evolved independently at least twice. In contrast, the evolution of cell shape and chloroplast morphology was difficult to elucidate, and could not be unambiguously reconstructed in our analyses.  相似文献   

15.
16.
As a result of intensive exploitation, disturbed forests now dominate large areas of lowland tropical rainforest in South‐East Asia. The genus Macaranga comprises some of the most important pioneer tree species of the region, among them M. beccariana and M. hypoleuca, two closely related obligate ant‐plants pollinated by thrips. We used nuclear and plastid DNA markers to address questions of genetic diversity and population structure. Twelve plastid haplotypes were detected among 281 samples, three of which were shared between the two study species. Hybrids between the two species appear to be rare. Overall, genetic diversity in both species was moderate to high, with low levels of population differentiation, consistent with other tropical pioneer trees. Genetic structure was generally more pronounced in plastid than in nuclear data, indicating that gene flow via pollen may be more efficient than via seeds. Thrips apparently also serve as efficient pollinators over long distances, perhaps through a combination of passive dispersal by wind and active search for inflorescences in the target area. Our results indicate that M. beccariana and M. hypoleuca populations from recently disturbed habitats do not yet suffer from reduced genetic diversity or increased inbreeding. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 606–621.  相似文献   

17.
A new cave‐dwelling fish species Triplophysa guizhouensis is described based on specimens collected from Guizhou, China, in a subterranean system interconnected with the Hongshui River drainage. The species can be distinguished from its congeners by a combination of characters: eyes present; caudal fin with 14 branched rays; inner gill rakers of first gill arch 8–10; posterior chamber of air bladder developed; and body posterior of dorsal fin scaled. A key to species of Triplophysa in the Pearl River basin is provided.  相似文献   

18.
Aristolochia bidoupensis Do sp. nov. is newly described. This new species, currently only known from southern Vietnam, is most similar to Aristolochia faviogonzalezii (northern Vietnam) and A. moupinensis (China), but can be distinguished from the latter two by the following characters: flowers terminal, axillary, solitary, peduncle 1.3–1.5 cm long, bracteole ovate, 3–4 × 2–3 mm, limb discoid‐shaped with three expanded lobes, not revolute, internal surface uniformly dark purple, smooth, throat uniformly golden without dots. Morphological characters such as a 3‐lobed gynostemium and a 3‐lobed limb place the new species in A. subgen. Siphisia.  相似文献   

19.
The dinoflagellates contain diverse plastids of uncertain origin. To determine the origin of the peridinin‐ and fucoxanthin‐containing dinoflagellate plastid, we sequenced the plastid‐encoded psaA, psbA, and rbcL genes from various red and dinoflagellate algae. The psbA gene phylogeny, which was made from a dataset of 15 dinoflagellates, 22 rhodophytes, five cryptophytes, seven haptophytes, seven stramenopiles, two chlorophytes, and a glaucophyte as the outgroup, supports monophyly of the peridinin‐, and fucoxanthin‐containing dinoflagellates, as a sister group to the haptophytes. The monophyletic relationship with the haptophytes is recovered in the psbA + psaA phylogeny, with stronger support. The rubisco tree utilized the ‘Form I’ red algal type of rbcL and included fucoxanthin‐containing dinoflagellates. The dinoflagellate + haptophyte sister relationship is also recovered in this analysis. Peridinium foliaceum is shown to group with the diatoms in all the phylogenies. Based on our analyses of plastid sequences, we postulate that: (1) the plastid of peridinin‐, and fucoxanthin‐containing dinoflagellates originated from a common ancestor; (2) the ancestral dinoflagellate acquired its plastid from a haptophyte though a tertiary plastid replacement; (3) ‘Form II’ rubisco replaced the ancestral rbcL after the divergence of the peridinin‐, and fucoxanthin‐containing dinoflagellates; and (4) we confirm that the plastid of P. foliaceum originated from a Stramenopiles endosymbiont.  相似文献   

20.
Impatiens shimianensis Q. Luo (Balsaminaceae), a new species from Shimian county in southwestern Sichuan province, China, is reported and its morphological characteristics are described and illustrated. Pollen grain morphology and seeds under SEM are also described. The new species is somewhat similar to I. bahanensis, I. brachycentra, I. laxiflora, I. parviflora and I. racemosa, but differs mainly by having leaf blades with white short stiff adpressed hairs; basal lobes of lateral united petals triangular, distal lobes lanceolate; and lower sepal salver‐shaped. The distinguishing characters for these six Impatiens species are given in a table.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号