首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cities and urban regions are undertaking efforts to quantify greenhouse (GHG) emissions from their jurisdictional boundaries. Although inventorying methodologies are beginning to standardize for GHG sources, carbon sequestration is generally not quantified. This article describes the methodology and quantification of gross urban carbon sinks. Sinks are categorized into direct and embodied sinks. Direct sinks generally incorporate natural process, such as humification in soils and photosynthetic biomass growth (in urban trees, perennial crops, and regional forests). Embodied sinks include activities associated with consumptive behavior that result in the import and/or storage of carbon, such as landfilling of waste, concrete construction, and utilization of durable wood products. Using methodologies based on the Intergovernmental Panel on Climate Change 2006 guidelines (for direct sinks) and peer‐reviewed literature (for embodied sinks), carbon sequestration for 2005 is calculated for the Greater Toronto Area. Direct sinks are found to be 317 kilotons of carbon (kt C), and are dominated by regional forest biomass. Embodied sinks are calculated to be 234 kt C based on one year's consumption, though a complete life cycle accounting of emissions would likely transform this sum from a carbon sink to a source. There is considerable uncertainty associated with the methodologies used, which could be addressed with city‐specific stock‐change measurements. Further options for enhancing carbon sink capacity within urban environments are explored, such as urban biomass growth and carbon capture and storage.  相似文献   

2.
Cities are thought to be associated with most of humanity's consumption of natural resources and impacts on the environment. Cities not only constitute major centers of economic activity, knowledge, innovation, and governance—they are also said to be linked to approximately 70% to 80% of global carbon dioxide emissions. This makes cities primary agents of change in a resource‐ and carbon‐constraint world. In order to set meaningful targets, design successful policies, and implement effective mitigation strategies, it is important that greenhouse gas (GHG) emissions accounting for cities is accurate, comparable, comprehensive, and complete. Despite recent developments in the standardization of city GHG accounting, there is still a lack of consistent guidelines regarding out‐of‐boundary emissions, thus hampering efforts to identify mitigation priorities and responsibilities. We introduce a new conceptual framework—based on environmental input‐output analysis—that allows for a consistent and complete reconciliation of direct and indirect GHG emissions from a city. The “city carbon map” shows local, regional, national, and global origins and destinations of flows of embodied emissions. We test the carbon map concept by applying it to the greater metropolitan area of Melbourne, Australia. We discuss the results and limitations of the approach in the light of possible mitigation strategies and policies by different urban stakeholders.  相似文献   

3.
This commentary is prompted by Thomas Wiedmann's “Defining (Urban) Producer and Consumer Sinks” published in this issue. In his article, Wiedmann presents a new framework for categorizing carbon sinks by borrowing practices from carbon emissions accounting and, essentially, proposing a “carbon sink footprint” model for urban inventories. While this is a valuable new concept, we argue that it is difficult to apply accurately given current knowledge and practices in urban life cycle assessment. Instead, a direct versus embodied classification based on where the sequestration service exists, not where the sink is located, is more useful from the perspective of municipal control and influence over creating and managing carbon sinks. This is ultimately important for the development of urban climate change mitigation measures.  相似文献   

4.
The Sixth and Seventh Conference of the Parties (COP 6 and 7) at The Hague, Bonn and Marrakesh came to a final Agreement on the Kyoto Protocol, which is thus ready for ratification by the individual nations. The Agreement was only achieved by allowing countries to offset their fossil fuel emission targets (on average 95% of the 1990 emissions) by increasing biological carbon sequestration, and by trading carbon credits. Activities that would count as increasing biological carbon sequestration include afforestation and reforestation, and changes in management of agriculture and forestry. According to the Agreement reached in Marrakesh, biological carbon sequestration may reach an offset of up to 80% of the required reduction in fossil fuel emissions (4% of the 5% reduction commitment). We explain why the allowable offset rose as high during the course of the negotiations. It is highlighted that major unintended consequences may be a result of the policy as it stands in the Marrakesh Accord. Major losses of biodiversity and primary forest are expected. We present scientific concerns regarding verification, which lead to scientific doubts that the practices encouraged by the Agreement can actually increase sequestration under a full carbon accounting scheme. We explain that there is a ‘win‐win’ option that would protect high carbon pools and biodiversity in an economically efficient way. But, this is not supported by the Agreement. Despite the very positive signal that most nations of the United Nations will devote major efforts towards climate protection, there remains a most urgent need to develop additional rules to avoid unintended outcomes, and to promote the ‘win‐win’ options that we explain.  相似文献   

5.
王悦  李锋  陈新闯  胡印红  胡盼盼  杨建新 《生态学报》2019,39(21):7840-7853
家庭消费碳排放是中国碳排放总量的重要组成部分,已成为碳排放增长的主要驱动力,从消费角度研究家庭碳排量特征及影响因素对家庭碳减排和低碳社区建设有重要意义。使用碳排放系数法和消费者生活方式法计算北京市5种典型社区家庭消费月均碳排量,通过最优尺度回归和多重比较分析对不同社区家庭碳排放影响因素进行探究。研究发现:北京市5种社区户均碳排放总量及构成差异显著,影响因素不一致。其中:(1)平房类社区家庭直接碳排量732.26 kgCO2/月高于其他社区,燃煤取暖是平房社区家庭直接碳排放高的主要因素,单位社区、政策性住房社区和商品房社区家庭直接碳排量较低,约50.00 kgCO2/月。家庭类型显著影响每个社区家庭直接碳排量,家庭积极参与节能环保活动有利于减少家庭直接碳排放;(2)商品房社区家庭间接碳排量最高,达3879.06 kgCO2/月,平房类社区家庭最低,间接碳排量仅为商品房社区的1/3,间接碳排放是家庭生活消费碳排放的主体。食品和居住消费产生的间接碳排量较高,老龄化社区家庭医疗保健消费碳排量更高;(3)家庭类型和月总收入对所有社区家庭间接碳排量影响显著,但社区环保工作满意度、社区环境满意度、家庭节能环保活动参与度、耐用品使用年限等因素影响程度存在差异,胡同社区和平房类社区中受教育水平高的家庭产生的间接碳排量更高,需积极灌输环保理念。进一步分析了主要影响因素在不同水平下对应的家庭碳排量差异程度与变化规律,有助于社区管理者识别高碳排家庭,为社区低碳管理提供新思路。  相似文献   

6.
Biogeochemical cycles are essential ecosystem services that continue to degrade as a result of human activities, but are not fully considered in efforts toward sustainable engineering. This article develops a model that integrates the carbon cycle with economic activities in the 2002 U.S. economy. Data about the carbon cycle, including emissions and sequestration flows, is obtained from the greenhouse gas inventory of the U.S. Environmental Protection Agency. Economic activities are captured by the economic input‐output model available from the Bureau of Economic Analysis. The resulting model is more comprehensive in its accounting for the carbon cycle than existing methods for carbon footprint (CF) calculations. Examples of unique flows in this model include the effect of land‐use and land‐cover change on carbon dioxide flow within the U.S. national boundary, carbon sequestration in urban trees, and emissions resulting from liming. This model is used to gain unique insight into the carbon profile of U.S. economic sectors by providing the life cycle emissions and sequestration in each sector. Such insight may be used to support policies, manage supply chains, and be used for more comprehensive CF calculations.  相似文献   

7.
土地利用变化的碳排放与碳足迹研究对了解人类活动对生态环境的扰动程度及其机理、制定有效的碳排放政策具有重要意义。采用1990—2010年四川省能源消费数据和土地利用数据,通过构建碳排放模型、碳足迹及其压力指数模型,对研究区20年来土地利用的碳排放及碳足迹进行了定量分析。结果表明:(1)土地利用变化的碳排放和能源消费碳的足迹呈显著增加趋势。碳排放增加5407.839×10~4t,增长率达143%;能源消费的碳足迹增加1566.622×10~4hm~2,四川全省的生态赤字达1563.598×10~4hm~2。(2)建设用地和林地分别为四川省最大的碳源与碳汇。20年间建设用地的碳排放增加5407.072×10~4t,增长率达126.27%,占碳排放总量的88%以上;林地的碳汇减少10.351×10~4t,但仍占四川省碳汇的96%以上。(3)土地利用碳排放、碳足迹和生态赤字存在明显区域差异。成都平原区碳排放、碳足迹压力最大,生态赤字严重,西部高山高原区和盆周山区碳排放、碳足迹最小,未出现生态赤字;成都、德阳、资阳和内江等地的碳排放、碳足迹压力最大,生态赤字最严重,甘孜、阿坝等地的碳排放、碳足迹最小,未出现生态赤字。(4)土地利用结构与碳排放、碳足迹存在一定的相互关系,趋高的碳源、碳汇比导致土地利用的碳源效应远大于碳汇效应。因此,四川省减排的重点应该在保持或增加现有的林地的同时,主要以降低建设用地的碳排放、碳足迹为主。  相似文献   

8.
森林在减缓全球气候变化和大气CO2浓度升高上具有重要作用.森林经营与管理下的新造林和森林保护具有显著的固碳功能,其中,新造林和森林保护的固碳速率分别为0.04~7.52、0.33~5.20 t C·hm-2·a-1.同时,营造林过程中物资的生产和运输导致边界内产生温室气体排放;营造林导致的活动转移、市场效应和生态环境变化导致边界外产生碳泄漏.本文综述了国内外森林经营与管理活动边界内温室气体排放源的界定、计量方法、温室气体排放量与排放速率;边界外碳泄漏的类型、计量方法与碳泄漏量;净固碳量以及温室气体排放和碳泄漏对固碳的抵消强度.边界内温室气体排放对固碳的抵消强度为0.01%~19.3%,进一步考虑碳泄漏时可增至95%.若仅考虑森林经营与管理在边界内直接产生的温室气体排放与可测量的活动转移碳泄漏,森林经营与管理具有较好的净固碳效益,且相比于农田固碳措施在温室气体净减排方面具有更好的应用前景.随着我国各项重大生态工程新一期的开展和对工程固碳效益的关注,为增加重大生态工程对温室气体的净减排量,有必要在工程开展前进行合理规划、在工程开展过程中加强控制和监测以减少工程实施导致的边界内温室气体排放和边界外碳泄漏.  相似文献   

9.
食物是人类生存和发展的基础,然而城市化过程中食物消费产生的碳排放也影响着生态环境与人类福祉。双碳目标下,如何协调食物消费增长与低碳减排之间的矛盾,亟需从不同尺度制定绿色消费优化策略。基于此,从居民食物消费碳排放研究的发文态势、研究方法以及研究内容3个方面进行归纳和梳理。研究发现:①由居民食物消费引起的碳排放问题仍是未来学术界的研究热点之一;②从生产端、消费端及系统视角3个方面对居民食物消费碳排放概念和内涵进行理解,有助于界定碳排放核算边界;③目前居民食物消费碳排放核算的主流测算方法包括生命周期评价(LCA)、碳排放系数、投入产出分析(IOA)和物质流分析(MFA)方法这4种;④从碳排放分布特征看,国内外学者从不同尺度(全球、国家、地区、省域、城市)、不同方式(直接与间接)、不同环节(生产与消费等)、不同消费结构(植物型与动物型)等多角度对其进行探讨;⑤从影响机制来看,基于多尺度时空融合视角量化分析居民食物消费碳排放作用机理这一科学问题值得关注。因此,综合考虑人口、社会、经济等多要素,同时考虑空间异质性,识别居民食物消费碳排放关键机制,构建面向双碳目标的碳减排潜力情景并揭示不同情景下的碳减排贡献,将有助于提出最优的居民生活绿色消费模式。  相似文献   

10.
Forests are a significant pool of terrestrial carbon. A key feature related to forest biomass harvesting and use is the typical time difference between carbon release into and sequestration from the atmosphere. Traditionally, the use of sustainably grown biomass has been considered as carbon neutral in life cycle assessment (LCA) studies. However, various approaches to account for greenhouse gas (GHG) emissions and sinks of forest biomass acquisition and use have also been developed and applied, resulting in different conclusions on climate impacts of forest products. The aim of this study is to summarize, clarify, and assess the suitability of these approaches for LCA. A literature review is carried out, and the results are analyzed through an assessment framework. The different approaches are reviewed through their approach to the definition of reference land‐use situation, consideration of time frame and timing of carbon emissions and sequestration, substitution credits, and indicators applied to measure climate impacts. On the basis of the review, it is concluded that, to account for GHG emissions and the related climate impacts objectively, biomass carbon stored in the products and the timing of sinks and emissions should be taken into account in LCA. The reference situation for forest land use has to be defined appropriately, describing the development in the absence of the studied system. We suggest the use of some climate impact indicator that takes the timing of the emissions and sinks into consideration and enables the use of different time frames. If substitution credits are considered, they need to be transparently presented in the results. Instead of carbon stock values taken from the literature, the use of dynamic forest models is recommended.  相似文献   

11.
碳中和的生态学透视   总被引:1,自引:0,他引:1       下载免费PDF全文
方精云 《植物生态学报》2021,45(11):1173-1176
在简述碳中和概念的基础上, 重点对碳中和的实现途径及生态系统碳汇的重要性进行了评述, 认为碳减排和碳增汇是实现“碳中和”的两个决定因素; 碳减排的核心是节能、调结构、增效和发展清洁能源, 碳增汇的核心是生态保护、建设和管理。由于植被自然生长和生态建设等因素, 中国陆地生态系统发挥了, 并将在未来继续发挥着重要的碳汇作用。为增强生态系统的固碳能力, 作者提出“三优”生态建设和管理原则, 即“最优的生态系统布局、最优的物种配置、最优的生态系统管理”。此外, 文章还对“后碳中和”时代可能出现的问题和挑战进行了展望, 认为碳中和后, 由于气候变化, 特别是大气CO2浓度增速减缓甚至下降等因素, 可能导致全球性的植被生产力下降, 对此可能带来的新的环境问题需要提前谋划和应对。  相似文献   

12.
Within the United Nations Framework Convention on Climate Change, articles 3.3 and 3.4 stipulate that some voluntary activities leading to an additional carbon (C) sequestration in soils could be accounted as C sinks in national greenhouse gas inventories. These additional C stocks should be verifiable. In this work, we assess the feasibility of verifying the effects of changes in land use or management practice on soil organic carbon (SOC), by comparing minimum detectable changes in SOC concentration for existing European networks suitable for soil monitoring. Among the tested scenarios, the minimum detectable changes differed considerably among the soil-monitoring networks (SMNs). Considerable effort would be necessary for some member states to reach acceptable levels of minimum detectable change for C sequestration accounting. For SOC, a time interval of about 10 years would enable the detection of some simulated large changes in most European countries. In almost all cases, the minimum detectable change in SOC stocks remains greater than annual greenhouse gases emissions. Therefore, it is unlikely that SMNs could be used for annual national C accounting. However, the importance of organic C in soil functions, and as an indicator of soil condition and trends, underlines the importance of establishing effective national SMNs.  相似文献   

13.
Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO2) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO2 and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO2 emission. We developed a first approximation to SOC enrichment for a well‐established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO2‐e yr?1) and Australian agricultural soils (0.4 Tg CO2‐e yr?1). These amount to underestimates for CO2 emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations’ C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind‐eroded SOC in the dust cycle is therefore essential to quantify the release of CO2 from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.  相似文献   

14.
江西省森林碳蓄积过程及碳源/汇的时空格局   总被引:1,自引:0,他引:1  
黄麟  邵全琴  刘纪远 《生态学报》2012,32(10):3010-3020
森林碳蓄积是研究森林与大气碳交换以及估算森林吸收或排放含碳气体的关键参数,不同年龄森林的碳源/汇功能差异则体现出森林生态系统碳蓄积过程的时间特征。以森林资源清查的样方数据作为数据源,通过刻画主要树种的林分蓄积生长曲线、林龄与净初级生产力(NPP)之间的关系,驱动区域碳收支模型(InTEC)模拟江西省1950—2008年的森林碳蓄积过程,了解山江湖工程实施以来的森林碳源/汇状况。结果表明,20世纪80年代以前,江西省森林年平均NPP波动于450—813 gCm-2a-1之间,年净增生物量碳26.55—36.23 TgC/a,年净增木质林产品碳0.01—0.3 TgC/a;80年代初,NPP和年净增生物量碳分别降至307.39 gC m-2a-1和17.31 TgC/a,而年净增木质林产品碳却高达0.6 TgC/a,说明森林被大量砍伐进入林产品碳库;1985年山江湖工程实施后,大面积造林使得年净增碳蓄积呈现急剧上升趋势,生物量和木质林产品碳蓄积分别上升至目前的42.37 TgC/a和0.79 TgC/a,而平均NPP值增加缓慢、碳汇功能降低,说明林分质量有待提高;90年代后碳汇功能开始稳步增强,说明造林面积的迅速增加是引起江西省森林碳增汇的主要驱动因素,但未来森林增汇潜力应源于森林生长和有效的经营管理。  相似文献   

15.
在"碳达峰、碳中和"战略需求下,土壤有机碳汇作为生态系统碳汇的重要组成部分,土壤碳库容量以及如何开展土壤有机碳汇核算日益成为生态碳汇的研究热点。梳理了国内外土壤有机碳汇及核算相关研究成果,解析了土壤有机碳汇的概念内涵,提出了以稳定性有机碳作为土壤有机碳汇的表征指标及获取方法。从土壤发生学角度提出了土壤碳汇阈值的概念,土壤中有机碳的含量随着分解转化最终会达到动态平衡,此时稳定有机碳含量值约是常数,这个常数就是稳定碳库的库容,在特定的成土因素下,碳库的核算值不会超过平衡时的常态值。在客观上,体现在非人类干扰状态下不同土壤类型自然状态下的稳定性有机碳含量。参照土壤有机质平衡理论,提出了土壤碳汇核算的定量化方法,为土壤碳汇的度量和核算提供了一套技术思路。下一步土壤有机碳汇的核算应在科学研究基础上多角度凝聚共识,制定碳汇核算标准,确定不同尺度下可操作、可重复以及可复制的土壤有机碳汇核算技术与方法。  相似文献   

16.
Although forest biomass energy was long assumed to be carbon neutral, many studies show delays between forest biomass carbon emissions and sequestration, with biomass carbon causing climate change damage in the interim. While some models suggest that these primary biomass carbon effects may be mitigated by induced market effects, for example, from landowner decisions to increase afforestation due to higher biomass prices, the delayed carbon sequestration of biomass energy systems still creates considerable scientific debate (i.e., how to assess effects) and policy debate (i.e., how to act given these effects). Forests can be carbon sinks, but their carbon absorption capacity is finite. Filling the sink with fossil fuel carbon thus has a cost, and conversely, harvesting a forest for biomass energy – which depletes the carbon sink – creates potential benefits from carbon sequestration. These values of forest carbon sinks have not generally been considered. Using data from the 2010 Manomet Center for Conservation Sciences ‘Biomass sustainability and carbon policy study’ and a model of forest biomass carbon system dynamics, we investigate how discounting future carbon flows affects the comparison of biomass energy to fossil fuels in Massachusetts, USA. Drawing from established financial valuation metrics, we calculate internal rates of return (IRR) as explicit estimates of the temporal values of forest biomass carbon emissions. Comparing these IRR to typical private discount rates, we find forest biomass energy to be preferred to fossil fuel energy in some applications. We discuss possible rationales for zero and near‐zero social discount rates with respect to carbon emissions, showing that social discount rates depend in part on expectations about how climate change affects future economic growth. With near‐zero discount rates, forest biomass energy is preferred to fossil fuels in all applications studied. Higher IRR biomass energy uses (e.g., thermal applications) are preferred to lower IRR uses (e.g., electricity generation without heat recovery).  相似文献   

17.
Evaluating contributions of forest ecosystems to climate change mitigation requires well‐calibrated carbon cycle models with quantified baseline carbon stocks. An appropriate baseline for carbon accounting of natural forests at landscape scales is carbon carrying capacity (CCC); defined as the mass of carbon stored in an ecosystem under prevailing environmental conditions and natural disturbance regimes but excluding anthropogenic disturbance. Carbon models require empirical measurements for input and calibration, such as net primary production (NPP) and total ecosystem carbon stock (equivalent to CCC at equilibrium). We sought to improve model calibration by addressing three sources of errors that cause uncertainty in carbon accounting across heterogeneous landscapes: (1) data‐model representation, (2) data‐object representation, (3) up‐scaling. We derived spatially explicit empirical models based on environmental variables across landscape scales to estimate NPP (based on a synthesis of global site data of NPP and gross primary productivity, n=27), and CCC (based on site data of carbon stocks in natural eucalypt forests of southeast Australia, n=284). The models significantly improved predictions, each accounting for 51% of the variance. Our methods to reduce uncertainty in baseline carbon stocks, such as using appropriate calibration data from sites with minimal human disturbance, measurements of large trees and incorporating environmental variability across the landscape, have generic application to other regions and ecosystem types. These analyses resulted in forest CCC in southeast Australia (mean total biomass of 360 t C ha?1, with cool moist temperate forests up to 1000 t C ha?1) that are larger than estimates from other national and international (average biome 202 t C ha?1) carbon accounting systems. Reducing uncertainty in estimates of carbon stocks in natural forests is important to allow accurate accounting for losses of carbon due to human activities and sequestration of carbon by forest growth.  相似文献   

18.
Contrary to the general trend in the tropics, Puerto Rico underwent a process of agriculture abandonment during the second half of the 20th century as a consequence of socioeconomic changes toward urbanization and industrialization. Using data on land‐use change, biomass accumulation in secondary forests, and ratios between gross domestic product (GDP) and carbon emissions, we developed a model of the carbon budget for Puerto Rico between 1936 and 2060. As a consequence of land abandonment, forests have expanded rapidly since 1950, achieving the highest sequestration rates between 1980 and 1990. Regardless of future scenarios of demography and land use, sequestration rates will decrease in the future because biomass accumulation decreases with forest age and there is little agricultural land remaining to be abandoned. Due to high per‐capita consumption and population density, carbon emissions of Puerto Rico have increased dramatically and exceeded carbon sequestration during the second half of the 20th century. Although Puerto Rico had the highest percent of reforestation for a tropical country, emissions during the period 1950–2000 were approximately 3.5 times higher than sequestration, and current annual emission is almost nine times the rate of sequestration. Additionally, while sequestration will decrease over the next six decades, current socioeconomic trends suggest increasing emissions unless there are significant changes in energy technology or consumption patterns. In conclusion, socioeconomic changes leading to urbanization and industrialization in tropical countries may promote high rates of carbon sequestration during the decades following land abandonment. Initial high rates of carbon sequestration can balance emissions of developing countries with low emission/GDP ratio. In Puerto Rico, the socioeconomic changes that promoted reforestation also promoted high‐energy consumption, and resulted in a net increase in carbon emissions.  相似文献   

19.
The present article aims to determine the current carbon footprint (CF) of Zernez, a Swiss mountain village, and to identify reduction potentials of greenhouse gas (GHG) emissions. For this purpose, material and energy flows were assessed mainly based on detailed household surveys, interviews, and energy bills, but also by means of other information sources, for example, national statistics, traffic censuses, and literature values. To set up the GHG balance, special attention was paid to the consistent definition of system boundaries by adopting two fundamentally different perspectives: purely geographical accounting (PGA) and the consumption‐based footprint (CBF) method. Each of these two perspectives total approximately 10 tonnes of carbon dioxide equivalents per capita per year. The PGA revealed that 70% of the direct emissions in Zernez are caused by agricultural activities, whereas no consumption area dominated the consumption‐induced CF. For the identification of targeted measures, both perspectives were considered in a complementary manner. The building stock and its underlying energy supply system showed a GHG reduction potential of 80%. The building sector was thus detected as a reasonable first step for the municipality to adopt GHG mitigation strategies. In the case of Zernez, building‐stock‐related measures are predicted to decrease the current CF by 13% (CBF) and 17% (PGA), respectively.  相似文献   

20.
周姝含  曹永强  么嘉棋  王菲  常志冬 《生态学报》2023,43(22):9266-9280
碳循环是影响气候变化的关键环节。利用改进的CASA模型对东北三省2000-2020年间自然碳源\汇进行了估算;通过增加真实碳排放量对估算过程的约束,改进了夜间灯光数据和碳排放拟合方法,探究了区域碳源碳汇和碳盈亏的时空分布和影响因素。结果显示:(1)净生态系统生产力在时间上呈现波动上升趋势,空间上黑龙江省自然碳汇总量最高(164.61 Tg C/a),约占东北三省的60%;(2)能源消费碳排放总量呈现先上升,再下降,近年趋于稳定的时间变化趋势,空间上以辽宁省年均碳排放量增速最快,增速约为6.95 Tg C/a;(3)2005年为东北三省整体从碳盈余转变为碳亏损的转折点,近年来亏损速率有所下降;(4)东北三省碳盈亏与自然因素呈正相关,与人口规模、地区生产总值、碳排放强度、产业结构呈现负相关关系。辽宁省能源消费总量的攀升使能源结构的下降未能扭转其碳亏损的局面,并使其碳盈亏与能源结构呈现正相关关系;黑龙江省和吉林省农业人口流失较快一定程度上导致了城市化水平与碳盈亏呈现正相关关系。(5)东北三省均应降低碳排放强度,黑龙江省和吉林省应调整能源结构,辽宁省应调整产业结构。研究结果可为东北三省"双碳目标"的实现提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号