首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Temporal changes in the pre‐ and post‐alighting responses of mated female diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), to two species of Brassica (Brassicaceae) host plants induced by larval feeding were studied using olfactometer and oviposition assays. Females displayed strong olfactory and oviposition preferences for herbivore‐induced common cabbage (Brassica oleracea var. capitata L. cv. sugarloaf) plants over intact plants; these preferences decreased with time and disappeared by the 7th day after induction. In herbivore‐induced common cabbage plants, eggs were clustered near feeding damage on the younger leaves (leaves 5–7), whereas in intact plants, eggs were clustered on the stem and lower leaves (leaves 1–4) . However, as the time interval between larval feeding and oviposition increased, more eggs were laid on the lower leaves of induced plants. This demonstrates a change in egg distribution from the pattern associated with induced plants to that associated with intact plants. In contrast, females displayed strong olfactory and oviposition preferences for intact Chinese cabbage [Brassica rapa ssp. pekinensis (Lour.) Hanelt cv. Wombok] plants over induced plants; these preferences decreased with time and disappeared by the 5th day after induction. More eggs were laid on the upper leaves (leaves 4–6) than on the lower leaves (leaves 1–3) of intact Chinese cabbage plants at first, but the distribution changed over time until there were no significant differences in the egg count between upper and lower leaves by the 4th day post induction. For both host plant species, pre‐alighting responses of moths were reliable indicators of post‐alighting responses on the first 2 days post induction. The results suggest that temporal changes in a plant's profile (chemical or otherwise) following herbivory may influence attractiveness to an insect herbivore and be accompanied by changes in olfactory and oviposition preferences.  相似文献   

2.
Oviposition patterns of the diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), differ between common cabbage (Brassica oleracea L. var. capitata) and Chinese cabbage (Brassica rapa L. var. pekinensis) (Brassicaceae) host plants. This study shows that the moth prefers to oviposit on adaxial rather than abaxial leaf surfaces and petioles of both host plants. More eggs were laid in leaf veins than on leaf laminas of both host plants, especially in Chinese cabbage, where 94.6% of eggs were laid in veins. On Chinese cabbage, very few eggs were laid in clusters (≥2 eggs), whereas on common cabbage approximately 30% of eggs were laid in groups of 2 or more eggs. Removal of wax from common cabbage leaves dramatically increased the number of eggs laid singly on the leaf lamina of treated plants, suggesting that leaf waxes affect how eggs are distributed by ovipositing DBM. Eggs were most susceptible to removal by rainfall from the plant surface immediately (<1 h) after oviposition and when close to hatching (>72h old) whereas they were least susceptible 24 h after oviposition. Eggs laid on common cabbage plants were more susceptible to simulated rainfall than eggs laid on Chinese cabbage plants. On common cabbage plants, egg susceptibility to rainfall on different plant parts ranked adaxial leaf surfaces>petioles = abaxial leaf surfaces>stem, but there was no difference in egg susceptibility to rainfall on the various plant parts of Chinese cabbage. Furthermore, on common cabbage plants, eggs laid on both adaxial and abaxial leaf surfaces were afforded significant protection from the effects of rainfall by leaves higher in the plant canopy. On common cabbage plants, oviposition patterns reduce the potential impact of rainfall on eggs, possibly reducing the effect of this important abiotic mortality factor in the field.  相似文献   

3.
The preference–performance hypothesis predicts that moth behaviour links plant variations with caterpillar attack and distribution, and the plant‐age hypothesis states that specialist herbivores are more successful in exploring younger plant tissue. We integrated these predictions to investigate underlying mechanisms by which moths and caterpillars of Plutella xylostella L. (Lepidoptera: Plutellidae) track and exploit within‐plant variability of leaf age and stratification. We measured leaf proteins, glucosinolates and fibre, as well as larval choice, developmental performance, and moth oviposition preference with regard to leaf age classes (young, mature and senescent) of three varieties (collard, cauliflower and cabbage) of the main host plant Brassica oleracea L. Larvae consistently fit the prediction that specialist herbivores prefer and perform better on young, upper leaves that have the highest protein level, despite the highest content of defence compounds. Conversely, moths laid more eggs on fibrous and less nutritious leaves from the lower and senescent stratum. We argue that the leaf stratification of host plants imposes conflicting selective pressures concerning offspring feeding and protection on adult females. If egg mortality is catastrophic on the upper nutritious leaves in a particular microclimatic context (e.g. sun, heat, winds, drought or rain‐washing), then oviposition preference will remain for the suboptimal lower and senescent leaves. The ability of larvae to spread upwards over the plant to access the more nutritious leaf stratum is critical when eggs are preferentially laid on the protective low‐quality leaves.  相似文献   

4.
In laboratory dual-choice assays females of the cabbage root fly, Delia radicum, prefer for oviposition plants with roots damaged by conspecific larvae to undamaged controls. Cauliflower and kale plants were inoculated with root fly eggs (25 per plant) and the hatching larvae were allowed to feed on the roots for various periods of time (1–17 days). After 4 (cauliflower) or 5 (kale) days of larval feeding the oviposition preference was most pronounced and flies laid between 64% and 68% of their eggs near plants with damaged roots. Later, with increasing damage but fewer surviving, and thus actively feeding, larvae, the magnitude of the preference declined. The preference for plants already damaged by conspecific larvae may contribute to the previously observed aggregated distribution of D. radicum eggs in Brassica crop fields.Further experiments revealed that the sensory cues inducing this oviposition preference originate from the complex consisting of the damaged roots, the surrounding substrate (soil) and associated microbes, rather than from the aerial plant parts. In choice assays using the root-substrate complex of damaged and control plants (aerial parts removed), the observed preference for damaged roots was similar to that found for the entire plant but was more pronounced. The damaged roots alone, compared to control roots, received up to 72% (cauliflower) and 75% (kale) of the eggs. By contrast, surrogate leaves sprayed with methanolic leaf surface extracts from the most preferred plants which had been damaged were not discriminated from surrogate leaved sprayed with extracts of the respective control plants. Analysis of glucosinolate levels in methanolic leaf surface extracts revealed that root damage resulted in enhanced concentrations of indole-glucosinolates on the leaf surface in kale but not in cauliflower. Although indole-glucosinolates are oviposition stimulants for the cabbage root fly, the induced changes were apparently too small to influence oviposition behaviour.  相似文献   

5.
Laboratory experiments were conducted to examine host selection by Cotesia plutellae Kurdjumov when larvae of its host, Plutella xylostella (Linnaeus), fed on Chinese cabbage, Brassica campestris L. ssp. pekinensis and those fed on common cabbage, Brassica oleracea L. var. capitata were provided simultaneously, and to investigate the roles of plant and host volatiles in mediating host selection. When C. plutellae were provided with equal numbers of host larvae on plants of the two species in one arena, the parasitoid parasitized 4- to 15-fold more host larvae on Chinese cabbage than on common cabbage. This preference changed little with host density. However, an experience of searching coupled with an oviposition in a host larva on a leaf of the less-preferred plant, common cabbage, significantly increased the preference for parasitizing host larvae on this plant and resulted in twice as many host larvae parasitized on this plant than on Chinese cabbage. Dual choice tests with a Y-tube olfactometer showed that plant volatiles from Chinese cabbage were more attractive to female C. plutellae than those from common cabbage when plants of both species were either intact or infested. In parallel to the increased parasitism on common cabbage following experience, oviposition in a host larva on this less-preferred plant significantly increased the response to volatiles emanating from that plant. These results indicate that host plants may strongly influence the foraging behaviour of C. plutellae, but their differential attractiveness to the parasitoid may be altered by experience of the parasitoid.  相似文献   

6.
Host plant resistance and biological control are vital integrated pest management tools against the diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), but to date no study has investigated this system including the DBM parasitoid Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae). We examined oviposition and development of P. xylostella exposed to two commercial cabbage cultivars (green ‘Chato de quintal’ and red ‘Roxo’) and possible effects upon O. sokolowskii. Under free‐choice tests, DBM females laid significantly more eggs on plants of the green cabbage, even though several population growth parameters showed that DBM developed better on the red cabbage. Furthermore, a laboratory free‐choice test with artificially green‐ and red‐painted kale leaf discs demonstrated a similar oviposition preference pattern, with green colour being preferred over red colour. The preference was apparently visually mediated; olfactometer tests showed similar attraction of moths to both green and red cultivars in choice and non‐choice tests. Host plant cultivar had no statistically significant effect on female parasitoid behaviour towards DBM larvae, nor on parasitoid numbers or longevity. Moreover, wasps parasitizing DBM larvae reared on the green cultivar developed more quickly and in larger numbers per parasitized larva. Thus, feeding on green cabbage rather than red does not hinder, and potentially even enhances, control of DBM by O. sokolowskii. On a practical level, these results suggest that intercalating green cabbage cultivars as a trap crop might help protect more profitable red cultivars in growing fields.  相似文献   

7.
Experiments were conducted to determine feeding site preferences of Crocidolomia pavonana (Fabricius) (Lepidoptera: Crambidae) larvae within cabbage plants, Brassica oleracea L. var. capitata cv. Warrior (Brassicaceae), and to determine whether induced plant responses to herbivory affect the behavior of larvae. In the first experiment, intra-plant damage and larval distribution were recorded to account for the spreading pattern of damage and larval feeding behavior on a plant; larvae initially fed on the base of leaves and moved progressively to the bud, leaf tips were avoided. In the second experiment, larval performance (the duration of the first instar, survival to the second instar, and weight of second instars) was assessed when larvae fed on the bud, the base, and the tip of the youngest fully expanded leaf on a plant. Crocidolomia pavonana larvae performed best when they fed on bud leaf tissue and most poorly when they fed on leaf tissue at the base of leaves. In the third experiment, expression of induced resistance was tested on each of the three plant parts using a first-instar bioassay. Negative impacts on larval growth and development were not detected when larvae fed on the bud or base tissue when plants were damaged prior to the assay. However, negative effects were detected in larvae feeding on tip leaf tissue when the base of the leaf was damaged prior to the assay or if the bud tissue was damaged simultaneously with the assay. The findings indicate that resource heterogeneity for C. pavonana within-cabbage plants is determined by both the initial quality of food at a location and by subsequent induced changes as a result of larval feeding; both contribute to the feeding pattern observed in these gregarious larvae.  相似文献   

8.
Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host‐searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA‐treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA‐treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect‐feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.  相似文献   

9.
In this study, we investigated whether the oviposition behaviour and performance of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on the rose cultivar Rosa chinensis Jacq. (Rosaceae) were affected when the plants were infected by rose powdery mildew, Podosphaera pannosa (Wallr.: Fr.) de Bary (Erysiphales). The bioassays revealed that the moths significantly avoided ovipositing on mildew‐infected rose leaves when compared to healthy leaves. Pupal weights, emergence rates, and fecundity decreased when the caterpillars were fed mildewed rose leaves. Further laboratory bioassays aimed to elucidate the effects of two volatile headspace extracts (separately collected from healthy and mildewed rose plants) on the oviposition behaviour and performance of the moths. The moths clearly preferred to oviposit on healthy rose leaves that were not sprayed with additional volatiles rather than on healthy leaves sprayed with the volatile extracts from mildewed plants. The mean number of eggs laid on the former leaves was more than six times higher than that laid on the latter leaves. Olfactory bioassays demonstrated that ovipositing moths were significantly more attracted to volatiles emitted by healthy rose leaves than to those emitted by mildew‐infected leaves. Similar results were obtained when comparisons were made between the volatile extracts collected from healthy and mildewed rose plants. Thus, volatiles from mildew‐infected roses have a strong inhibitory effect against the moths. These results indicated that rose volatiles play a role in the oviposition behaviour of the moths, and that the volatiles induced by powdery mildew might be used for insect control.  相似文献   

10.
Plants have evolved a number of defences to ameliorate herbivore attacks including chemicals induced by mechanical wounding. Such changes in plant chemical composition are potential confounding factors in experiments on plant – insect interactions, which often present cuttings of potential host plants to phytophagous insects. In particular, this could affect studies of female egg‐laying preference and larval performance, because the same plant chemicals that deter certain generalist insects can elevate attacks from more specialized insects. Furthermore, plant cuttings are by definition smaller than intact plants, and any female host size preference could thus affect experiments using plant cuttings. We first assessed female preference and larval performance of a specialist herbivore, Pieris napi (L.) (Lepidoptera: Pieridae, Pierini), confronted with either intact plants or leaf‐cuttings of four Brassicaceae host plants, Alliaria petiolata (Bieb.) Cavara & Grande, Barbarea vulgaris (L.) WT Aiton, Berteroa incana (L.) DC., and Brassica napus (L.). Egg and larval survival did not differ between intact plants and leaf‐cuttings, whereas larval growth was slightly, but significantly, faster on leaf‐cuttings. Females, however, significantly preferred to lay eggs on intact plants of all four hosts, although the preference hierarchy for the intact plants was largely mirrored by that for leaf‐cuttings. We then tested the female preference for different size‐classes of intact B. napus plants. Small individuals received more eggs than larger individuals, and follow‐up experiments showed that this difference was largely generated by a strong female preference for cotyledon leaves; there was no significant difference in female preference for large and small individuals when both carried cotyledons, and females landing on cotyledons were more likely to oviposit compared to when landing on a true leaf. Our study concludes that plant cuttings can serve as adequate proxies for live plants for preference/performance studies, but that experimentalists should be aware of the variation imposed both by plant handling and plant phenology for female oviposition preference.  相似文献   

11.
In 2007, an invasive paropsine beetle, Paropsisterna nr. gloriosa Blackburn, caused severe defoliation of Eucalyptus in mixed‐species foliage plantations in south‐west Ireland. At many of the plantations, Eucalyptus parvula L.A.S. Johnson & K.D. Hill was the most heavily damaged species while Eucalyptus pulverulenta Sims was generally resistant to the beetle. However, at the most heavily damaged site beetles moved to feed on E. pulvarulenta presumably during periods when suitable foliage (new leaves) of E. parvula had been severely depleted. The present study examines factors underlying shifts in oviposition from the preferred to non‐preferred host. In choice and no‐choice experiments, P. nr. gloriosa laid more eggs directly on new E. parvula foliage compared with new E. pulverulenta foliage. However, in choice experiments where new E. parvula foliage was unavailable (but old foliage available), more eggs were laid on new E. pulverulenta foliage. The potential for prior feeding damage to stimulate or deter oviposition on either host was also examined. Prior damage to new and old E. parvula leaves increased egg‐laying directly on the damaged foliage; however, prior damage to E. pulverulenta may have inhibited oviposition. The results suggest that in mixed‐species plantations, facilitation of oviposition on preferred hosts through prior feeding damage helps maintain the relative resistance of E. pulverulenta against P. nr. gloriosa, even under high beetle densities. However, the vulnerability of E. pulverulenta will increase where suitable age‐classes of preferred‐host foliage are severely depleted or unavailable.  相似文献   

12.
The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is oligophagous on plants in the Brassicaceae, and is considered one of the most significant insect pests of canola (Brassica napus L.), a major oilseed crop grown in the Prairie Provinces of Canada. The bertha armyworm (BAW), Mamestra configurata Walker (Lepidoptera: Noctuidae), is a generalist herbivore that preferentially feeds on canola plants. In the canola growing season in the Prairie Provinces of Canada, DBM feeding occurs prior to BAW herbivory. In this study, we test the effect of DBM herbivory on subsequent host use by BAW. Oviposition by female BAW was not influenced by previous DBM‐herbivory or mechanical damage of canola plants. Bertha armyworm larvae were deterred from feeding on canola previously damaged by DBM and larvae developed into lighter pupae when reared on DBM‐damaged plants. Bertha armyworm pupae that developed from larvae fed on mechanically damaged plants had similar pupal weights to those fed undamaged plants. Adult BAW reared on canola with previous DBM feeding damage had marginally smaller wings than moths reared on canola treated differently. The combination of these results suggests that herbivory by the brassicaceous specialist, DBM, negatively influences host use and larval performance by the generalist, BAW, on canola.  相似文献   

13.
Interactions between Brassica cultivars (cvs) and adult and larval stages of Plutella xylostella L. were examined. In six-way choice oviposition experiments, glasshouse-grown Chinese cabbage cv. Tip Top was preferred to five outdoor-grown temperate cabbage cultivars but was similar to four out of five tropical cultivars. Bionomic studies with neonate larvae on temperate cabbage cultivars showed that mean larval duration was longer and percentage survival less on older compared with younger plants but that plant age or cultivar had little effect on pupal weight. The fecundity of P. xylostella reared on outdoor-grown cabbage cultivars varied ten-fold between the poorest and the best cultivar but plant age had little effect on P. xylostella reared on Chinese cabbage. In a glasshouse experiment, survival of P. xylostella on Chinese cabbage was significantly greater compared with field-grown glossy-leaved, normal bloom green cabbage and red cabbage. In bioassays with neonate larvae, when the leaves were placed vertically instead of horizontally a significant level of intrinsic resistance was revealed for glasshouse and field-grown glossy-leaved cabbage but not for Chinese cabbage. Observed differences in host status to P. xylostella are discussed in relation to the potential for partial plant resistance in control programmes.  相似文献   

14.
Most female herbivores ensure to lay eggs where their offspring can develop successfully. The oviposition preferences of females affect strategies in pest management. In this study, the performance of two cohorts of Trichoplusia ni larvae on cabbage and cotton (after they had been transferred from their original host plants) were investigated. The preferences of female moth ovipositing and larval feeding on these two host plants were observed. The results indicated that plants significantly affected oviposition preference of the female adults and development and survival of larvae of T. ni. All females preferred to lay eggs on cabbage than cotton regardless from which host they originated. The detrimental effects of cotton on the development and survival of T. ni larvae originated from cabbage (CaTn) increased with the increase of the larval age when they were transferred. In addition, the host plant change did not significantly affect the development and survival of larvae of T. ni originating from cotton (CoTn). Larvae of CaTn preferred cabbage plants as compared to cotton plants, whereas larvae of CoTn did not show a significant choice. Although the adult females preferred laying eggs on cabbage, they did not show preferences between cotton and cabbage in a Y‐tube olfactometer test. The hypothesis of oviposition preference and performance of larvae was supported by the results of CaTn, whereas they not supported by those from CoTn. Based on these results, the strategy to manage this serious pest was discussed.  相似文献   

15.
Field observations and laboratory experiments have demonstrated that infestation by the serpentine leaf miner, Liriomyza trifolii Burgess (Diptera: Agromyzidae), begins in the lower leaves of the potato plant, and proceeds through the middle leaves to those of the upper canopy. In choice and no‐choice experiments, mated adult L. trifolii females were given access for 48 h to potato plants, and caged on differently aged leaves. The extent of their feeding and oviposition on the 5–7 leaflets of the upper, middle, and lower leaves were recorded. The life history variables of the next generation were estimated: percentage egg hatch, number of mines formed, larval survival, number of pupae formed, size and weight of pupae, percentage pupation, number of adults formed, percentage emergence, size and weight of adults, sex ratio, adult longevity, and their reproductive performance. The results showed that L. trifolii females laid fewer eggs on the upper leaves, which were poor hosts for larvae. However, a comparison of oviposition behavior between the middle and lower leaves showed that the data did not fit the oviposition preference–offspring performance hypothesis, which postulates that females preferentially oviposit on hosts on which larvae perform best. Females exhibited a preference for the larger, older, lower leaves, although the middle leaves were superior for the growth and development of the young stages. It is hypothesized that adult ovipositional preference for the older, larger, and thicker leaves of the lower foliage may be influenced by factors other than resource quality for larvae.  相似文献   

16.
Anthocoris nemorum L. and Anthocoris nemoralis Fabricius (Heteroptera: Anthocoridae) are important predators of insect pests in pome fruit. Females insert their eggs in leaf tissue. The females’ choice of oviposition site is important for the subsequent distribution of nymphs on host plants. Oviposition preference for apple and pear leaves was tested in the laboratory in four experiments (experiments 1–4). In three experiments it was tested whether simulated insect damage to leaves (experiments 5 and 6) or the presence of prey (experiment 7) influenced oviposition preference. The effect of the presence of prey was only tested for A. nemorum on apple leaves. There was a highly significant anthocorid species × plant interaction for the number of eggs laid on apple and pear leaves. Anthocoris nemorum laid more eggs on apple than on pear leaves, while A. nemoralis preferred pear. Anthocoris nemorum's preference for apple increased over the 6‐week period in which experiments 1–4 were performed, from 66% to 91% eggs laid on apple leaves. No change over time in preference was found for A. nemoralis. Across experiments 1–4, the majority of A. nemorum eggs were laid near leaf margins, whereas eggs of A. nemoralis were more commonly found in the leaf centre, 5 mm or more from the margin, with a highly significant leaf region × species interaction. There was no significant difference in preference for leaf side between A. nemorum and A. nemoralis, but there was a highly significant plant × leaf side × experiment interaction. Thus, more eggs were laid on the ventral than on the dorsal side of pear leaves in experiment 4, while significantly more eggs were laid on the dorsal side of apple leaves in experiments 3 and 4. Choice tests between damaged and healthy leaves showed that A. nemorum laid significantly more eggs on the damaged leaves, while A. nemoralis preferred healthy leaves. Anthocoris nemorum showed a near‐significant preference for ovipositing on leaves with eggs of Operophtera brumata (Lepidoptera: Geometridae). The oviposition preferences found correspond to the natural distribution of these predators in apple and pear orchards. The preference of A. nemorum for leaf margins, and of A. nemoralis for the leaf centre as an oviposition site, supports earlier observations. A preference for leaf side for oviposition site has not been reported earlier. Preference for damaged leaves could help A. nemorum to locate prey in a field situation.  相似文献   

17.
The term 'dead-end trap cropping' has recently been proposed to identify a plant that is highly attractive for oviposition by an insect pest, but on which offspring of the pest cannot survive. The potential of the wild crucifer Barbarea vulgaris R. Br. to allure and serve as a dead-end trap crop for the diamondback moth Plutella xylostella (L.), an important pest of cruciferous crops worldwide, was examined in laboratory experiments. When P. xylostella adults were provided with a dual-choice of plants of B. vulgaris, and Chinese cabbage Brassica campestris (L.), in one arena, adult moths laid 2.5-6.8 times more eggs on the former than on the latter. When P. xylostella adults were provided with a dual-choice of plants of B. vulgaris and common cabbage Brassica oleracea L., adult moths laid virtually all their eggs on the former and ignored the latter. Nearly all P. xylostella eggs laid on the three species of plants hatched successfully, but nearly all individuals on plants of B. vulgaris died as neonates or early instar larvae, while 87-100% of the larvae on Chinese cabbage and common cabbage survived to pupation. Dual choice tests with a Y-tube olfactometer showed that volatiles from B. vulgaris were much more attractive to P. xylostella adults than those from common cabbage. The results demonstrate that B. vulgaris has a great potential as a dead-end trap crop for improving management of P. xylostella. Factors that may influence the feasibility of using B. vulgaris as a trap crop in the field are discussed, and ways to utilize this plant are proposed.  相似文献   

18.
The relationship between the oviposition site preferences of predators in the face of intraguild competitors has received little attention, but it likely shapes the reproductive ecology of predatory species. In this study, oviposition intensity and the within-plant distribution of Orius insidiosus (Heteroptera: Anthocoridae) and Nabis americoferus (Heteroptera: Nabidae) eggs on Phaseolus vulgaris plants was studied when the two species were present independently or in combination. Both predators laid more eggs in the presence of the other species relative to when they were only exposed to conspecifics. When only exposed to conspecifics, O. insidiosus preferred to lay eggs on leaves and petioles on the upper half of the plant, whereas N. americoferus laid eggs mostly on the petioles and petiolules equally throughout the height of the plant. But when both species were present, O. insidiosus preferred to lay eggs on the leaf, whereas N. americoferus altered their behavior to lay an even greater proportion of their eggs on the petioles and petiolules. They altered their preferences for different plant strata too: N. americoferus laid more eggs on the upper quarter of the plant when O. insidiosus was present, and O. insidiosus was marginally more likely to lay eggs lower on the plant in the presence of N. americoferus. This study indicates that these two Cimicomorpha can detect the presence of one another, and that they adjust their reproductive decisions, presumably to avoid potential competitive interactions.  相似文献   

19.
Mated femaleTrichoplusia ni (Hubner) moths, when presented a choice of either undamaged cotton plants,Gossypium hirsutum L., or damaged plants (cut leaves or feedingT. ni larvae) in a flight tunnel, were most often attracted first to the damaged plants. However, these same moths oviposited primarily on the undamaged plants. In a similar test with cabbage plants,Brassica oleracea L., the presence of conspecific larvae decreased both attraction and oviposition. Cuts to cabbage leaves had no significant effect on attraction or oviposition. When presented one plant at a time, percentages of cabbage looper moths attracted were not affected by the presence of larvae on either cabbage or cotton plants, or by cuts to cabbage plant leaves. Percentages of moths attracted were, however, higher using cotton plants with cut leaves. The results suggest an important role for damage induced plant volatiles in host location as well as host acceptance byT. ni.  相似文献   

20.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), highly prefers to oviposit on yellow rocket, Barbarea vulgaris (R. Br.) (Cruciferae) var. arcuata, despite larvae not being able to survive on it, suggesting it may have potential as a trap crop. In a no‐choice greenhouse experiment, P. xylostella laid 28% more eggs on B. vulgaris than on cabbage. Within the B. vulgaris plant, P. xylostella laid 3.7 times more eggs on younger than older leaves. Furthermore, we demonstrated that in the presence of B. vulgaris volatiles, P. xylostella laid 23% more eggs on cabbage plants than when B. vulgaris volatiles were absent. Because increased oogenesis in the presence of B. vulgaris could complicate the use of this host as a trap crop for P. xylostella, we wanted to examine levels of oogenesis in varying mixtures of cabbage and B. vulgaris. In outdoor screenhouse experiments, P. xylostella laid a decreasing percentage of eggs on cabbage as the percentage of B. vulgaris increased. However, the total number of eggs laid on cabbage did not differ among treatments, suggesting that the presence of B. vulgaris may have stimulated P. xylostella oviposition. In the field, total oviposition in cabbage plots containing B. vulgaris was 6.3 times higher than in cabbage plots without B. vulgaris. However, in plots with B. vulgaris, P. xylostella laid 99% of the eggs on B. vulgaris and oviposition on cabbage plants was 6.2 times lower than in the plots without B. vulgaris. The results of this study are discussed according to P. xylostella egg‐laying behavior and life history as it relates to its interaction with B. vulgaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号