首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A microalgal strain was established from Cepsa's refinery wastewater treatment plant in Huelva (southwest of Spain). Genetic analysis of the chloroplastic rbcL gene encoding for the large subunit of the ribulose bisphosphate carboxylase enzyme (Rubisco) showed the strain had high homology with other known rbcL sequences of the genus Chlorella. The strain grows well autotrophically in minimum mineral medium, with a growth rate of 0.28 ± 0.012 day?1 and a biomass productivity of 138.9 ± 6.7 mg L?1 day?1. N‐starvation and/or over illumination with 650 µmol photons m?2 s?1 of PAR light on the cultures induced a significant increase in the intracellular content of lipids in this microalga. Total lipids were extracted from the strain biomass with 2:1 chloroform‐methanol, and they accounted for approximately 50% of the dry biomass. Polyunsaturated fatty acids (PUFAs) represented 60.4% of the total fatty acids found in the strain, thus making this biomass attractive as a high added‐value product source. The strain was able to grow efficiently in the refinery treated wastewater from which it was isolated, providing an attractive advantage for further development of more sustainable algal biomass production processes at reduced costs close to a petrol refinery area.  相似文献   

2.
Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae‐growth‐promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L?1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L?1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L?1 NH4+, but not at 8 mg · L?1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per‐cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L?1 NH4+ was GDH activity per cell higher.  相似文献   

3.
Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate high-value compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This microalga accumulates high concentrations of lutein, a very well-known natural antioxidant. The aim of this study is to assess use of different carbon sources (CO2, glucose, glycerol, starch, urea, and glycine) for efficient growth of and carotenoid production by C. acidophila. Our results reveal that growth of the microalga on different carbon sources resulted in different algal biomass productivities, urea being as efficient as CO2 when used as sole carbon source (~20 g dry biomass m–2 day–1). Mixotrophic growth on glucose was also efficient in terms of biomass production (~14 g dry biomass m–2 day–1). In terms of carotenoid accumulation, mixotrophic growth on urea resulted in even higher productivity of carotenoids (mainly lutein, probably via α-carotene) than obtained with photoautotrophic cultures (70% versus 65% relative abundance of lutein, respectively). The accumulated lutein concentrations of C. acidophila reported in this work (about 10 g/kg dry weight, produced in batch systems) are among the highest reported for a microalga. Glycerol and glycine seem to enhance β-carotene biosynthesis, and when glycine is used as carbon source, zeaxanthin becomes the most accumulated carotenoid in the microalga. Strategies for production of lutein and zeaxanthin are suggested based on the obtained results.  相似文献   

4.
A natural assemblage of microalgae from a facultative lagoon system treating municipal wastewater was enriched for growth in the effluents of an anaerobic digester processing dairy waste. A green microalga with close resemblance to Chlorella sp. was found to be dominant after multiple cycles of sub‐culturing. Subsequently, the strain (designated as LLAI) was isolated and cultivated in 20× diluted digester effluents under various incident light intensities (255–1,100 µmoles m?2 s?1) to systematically assess growth and nutrient utilization. Our results showed that LLAI production increased with increasing incident light and a maximum productivity of 0.34 g L?1 d?1 was attained when the incident irradiance was 1,100 µmoles m?2 s?1. Lack of growth in the absence of light indicated that the cultures did not grow heterotrophically on the organic compounds present in the medium. However, the cultures were able to uptake organic N and P under phototrophic conditions and our calculations suggest that the carbon associated with these organic nutrients contributed significantly to the production of biomass. Overall, under high light conditions, LLAI cultures utilized half of the soluble organic nitrogen and >90% of the ammonium, orthophosphate, and dissolved organic phosphorus present in the diluted waste. Strain LLAI was also found to accumulate triacylglycerides (TAG) even before the onset of nutrient limitation and a lipid productivity of 37 mg‐TAG L?1 d?1 was measured in cultures incubated at an incident irradiance of 1,100 µmoles m?2 s?1. The results of this study suggest that microalgae isolates from natural environments are well‐suited for nutrient remediation and biomass production from wastewater containing diverse inorganic and organic nutrient species. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1336–1342, 2016  相似文献   

5.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

6.
Aims: Isolation, characterization and assessment of butachlor‐degrading potential of bacterial strain JS‐1 in soil. Methods and Results: Butachlor‐degrading bacteria were isolated using enrichment culture technique. The morphological, biochemical and genetic characteristics based on 16S rDNA sequence homology and phylogenetic analysis confirmed the isolate as Stenotrophomonas acidaminiphila strain JS‐1. The strain JS‐1 exhibited substantial growth in M9 mineral salt medium supplemented with 3·2 mmol l?1 butachlor, as a sole source of carbon and energy. The HPLC analysis revealed almost complete disappearance of butachlor within 20 days in soil at a rate constant of 0·17 day?1 and half‐life (t½) of 4·0 days, following the first‐order rate kinetics. The strain JS‐1 in stationary phase of culture also produced 21·0 μg ml?1 of growth hormone indole acetic acid (IAA) in the presence of 500 μg ml?1 of tryptophan. The IAA production was stimulated at lower concentrations of butachlor, whereas higher concentrations above 0·8 mmol l?1 were found inhibitory. Conclusions: The isolate JS‐1 characterized as Stenotrophomonas acidaminiphila was capable of utilizing butachlor as sole source of carbon and energy. Besides being an efficient butachlor degrader, it substantially produces IAA. Significance and Impact of the Study: The bacterial strain JS‐1 has a potential for butachlor remediation with a distinctive auxiliary attribute of plant growth stimulation.  相似文献   

7.
The influence of Cu (II) on productivity and accumulation of value carotenoids of a microalga that naturally grows at low pH, Coccomyxa onubensis, was investigated. The presence of Cu (II), added in range between 0.06 and 0.4 mM, increases both algal viability and synthesis of carotenoids, mostly lutein and β-carotene. A copper concentration of 0.2 mM was found to be as the most appropriate one to enhance productivity and lutein accumulation and was further used in semicontinuous cultures. Unlike acidophile microalgae, C. onubensis showed unusual high growth rates (0.50 d?1) when cultured semicontinuously at 0.2 mM Cu (II) and getting an average productivity of 0.42 g l?1 d?1. Lutein content in 0.2 mM Cu (II) cultures was roughly 50% higher than that obtained for control cultures. C. onubensis seems to have great potential as lutein producer when compared to known lutein accumulating microalgae. C. onubensis is able to live in highly selective environment, which confers the microalga a competitive advantage over other organisms that cannot survive at such low pH and high concentrations of heavy metals. This might make of C. onubensis a unique alga for large producer in open systems.  相似文献   

8.
In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L?1 d?1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.  相似文献   

9.
The seaweed Ulva lactuca L. was spray cultured by mariculture effluents in a mattress‐like layer, held in air on slanted boards by plastic netting. Air‐agitated seaweed suspension tanks were the reference. Growth rate, yield, and ammonia‐N removal rate were 11.8% · d?1, 171 g fresh weight (fwt) · m?2 · d?1, and 5 g N · m?2 · d?1, respectively, by the spray‐cultured U. lactuca, and 16.9% · d?1, 283 g fwt · m?2 · d?1, and 7 g N · m?2 · d?1, respectively, by the tank U. lactuca. Biomass protein content was similar in both treatments. Dissolved oxygen in the fishpond effluent water was raised by >3 mg · L?1 and pH by up to half a unit, upon passage through both culture systems. The data suggest that spray‐irrigation culture of U. lactuca in this simple green‐mattress‐like system supplies the seaweed all it needs to grow and biofilter at rates close to those in standard air‐agitated tank culture.  相似文献   

10.
Grazing and growth of Pfiesteria piscicida (Pfiest) were investigated using batch and cyclostat cultures with Rhodomonas sp. (Rhod) as prey. Observed maximum growth rates (1.4 d?1) and population densities (2 × 105 cells·mL?1) corresponded to values predicted by Monod functions (1.76 d?1; 1.4 × 105 cells·mL?1). In batch cultures under a range of prey‐to‐predator ratios (0.1:1 to 180:1) and prey concentrations (1000–71,000 cells·mL?1), Rhodomonas sp. was always depleted rapidly and P. piscicida concentrations increased briefly. The rate of Rhodomonas sp. depletion and the magnitude of P. piscicida population maxima depended on the prey‐to‐predator ratio and prey concentration. Starvation resulted in cell cycle arrest at G1 and G2+M and ultimately the demise of both P. piscicida and Rhodomonas sp. populations, demonstrating the dependence of P. piscicida on the supply of appropriate prey. The depletion of Rhodomonas sp. populations could be attributed directly to grazing, because P. piscicida did not exert detectable inhibitory effects on the growth of Rhodomonas sp. but grazed intensely, with maximum grazing rates>10 Rhod·Pfiest?1·d?1 and with no apparent threshold prey abundance for grazing. The results suggest that 1) the abundance of appropriate prey may be an important factor regulating P. piscicida abundance in nature, 2) P. piscicida may control prey population, and 3) high growth and grazing potentials of P. piscicida along with cell cycle arrest may confer survival advantages.  相似文献   

11.
Heterotrophic and anaerobic microalgae are of significance in both basic research and industrial application. A microalga strain was isolated from a wastewater treatment pond and identified as Chlorella sorokiniana Shihira et W. R. Krauss GXNN01 in terms of morphology, physiology, and phylogeny. The strain grows rapidly in heterotrophic or mixotrophic conditions with addition of various carbon sources, and even in anaerobic conditions. The maximum growth rate reached 0.28 d?1 when using d,l ‐malate as the carbon source, and the protein content of the microalgae was 75.32% in cell dry weight. The strain was shown to be capable of (1) utilizing d,l ‐malate only with light, (2) inhibiting photosynthesis in mixotrophic growth, and (3) growing in anaerobic conditions with regular photosynthesis and producing oxygen internally. This study demonstrates the influence of oxygen (aerobic vs. anaerobic) and metabolic regime (autotrophy, mixotrophy, heterotrophy) on the physiological state of the cell.  相似文献   

12.
Small single‐celled Chaetoceros sp. are often widely distributed, but frequently overlooked. An estuarine diatom with an extremely high growth potential under optimal conditions was isolated from the Shinkawa‐Kasugagawa estuary in the eastern part of the Seto Inland Sea, western Japan. It was identified as Chaetoceros salsugineum based on morphological observations. This strain had a specific growth rate of 0.54 h?1 at 30°C under 700 μmol · m?2 · s?1 (about 30% of natural maximal summer light) with a 14:10 L:D cycle; there was little growth in the dark. However, under continuous light it grew at only 0.35 h?1 or a daily specific growth rate of 8.4 d?1. In addition, cell density, chlorophyll a, and particulate organic carbon concentrations increased by about 1000 times in 24 h at 30°C under 700 μmol · m?2 · s?1 with a 14:10 L:D cycle, showing a growth rate of close to 7 d?1. This very rapid growth rate may be the result of adaptation to this estuarine environment with high light and temperature. Thus, C. salsugineum can be an important primary producer in this estuary in summer and also an important organism for further physiological and genetic research.  相似文献   

13.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

14.
To develop tools for modeling diazotrophic growth in the open ocean, we determined the maximum growth rate and carbon content for three diazotrophic cyanobacteria commonly observed at Station ALOHA (A Long‐term Oligotrophic Habitat Assessment) in the subtropical North Pacific: filamentous nonheterocyst‐forming Trichodesmium and unicellular Groups A and B. Growth‐irradiance responses of Trichodesmium erythraeum Ehrenb. strain IMS101 and Crocosphaera watsonii J. Waterbury strain WH8501 were measured in the laboratory. No significant differences were detected between their fitted parameters (±CI) for maximum growth rate (0.51 ± 0.09 vs. 0.49 ± 0.17 d?1), half‐light saturation (73 ± 29 vs. 66 ± 37 μmol quanta · m?2 · s?1), and photoinhibition (0 and 0.00043 ± 0.00087 [μmol quanta · m?2 · s?1]?1). Maximum growth rates and carbon contents of Trichodesmium and Crocosphaera cultures conformed to published allometric relationships, demonstrating that these relationships apply to oceanic diazotrophic microorganisms. This agreement promoted the use of allometric models to approximate unknown parameters of maximum growth rate (0.77 d?1) and carbon content (480 fg C · μm?3) for the uncultivated, unicellular Group A cyanobacteria. The size of Group A was characterized from samples from the North Pacific Ocean using fluorescence‐activated cell sorting and real‐time quantitative PCR techniques. Knowledge of growth and carbon content properties of these organisms facilitates the incorporation of different types of cyanobacteria in modeling efforts aimed at assessing the relative importance of filamentous and unicellular diazotrophs to carbon and nitrogen cycling in the open ocean.  相似文献   

15.
The toxigenic diatom Pseudo‐nitzschia cuspidata, isolated from the U.S. Pacific Northwest, was examined in unialgal batch cultures to evaluate domoic acid (DA) toxicity and growth as a function of light, N substrate, and growth phase. Experiments conducted at saturating (120 μmol photons · m?2 · s?1) and subsaturating (40 μmol photons · m?2 · s?1) photosynthetic photon flux density (PPFD), demonstrate that P. cuspidata grows significantly faster at the higher PPFD on all three N substrates tested [nitrate (NO3?), ammonium (NH4+), and urea], but neither cellular toxicity nor exponential growth rates were strongly associated with one N source over the other at high PPFD. However, at the lower PPFD, the exponential growth rates were approximately halved, and the cells were significantly more toxic regardless of N substrate. Urea supported significantly faster growth rates, and cellular toxicity varied as a function of N substrate with NO3?‐supported cells being significantly more toxic than both NH4+‐ and urea‐supported cells at the low PPFD. Kinetic uptake parameters were determined for another member of the P. pseudodelicatissima complex, P. fryxelliana. After growth of these cells on NO3? they exhibited maximum specific uptake rates (Vmax) of 22.7, 29.9, 8.98 × 10?3 · h?1, half‐saturation constants (Ks) of 1.34, 2.14, 0.28 μg‐at N · L?1, and affinity values (α) of 17.0, 14.7, 32.5 × 10?3 · h?1/(μg‐at N · L?1) for NO3?, NH4+ and urea, respectively. These labo‐ratory results demonstrate the capability of P. cuspidata to grow and produce DA on both oxidized and reduced N substrates during both exponential and stationary growth phases, and the uptake kinetic results for the pseudo‐cryptic species, P. fryxelliana suggest that reduced N sources from coastal runoff could be important for maintenance of these small pennate diatoms in U.S. west coast blooms, especially during times of low ambient N concentrations.  相似文献   

16.
Plasmid phr‐YPGHc, containing the fish growth hormone (GH) cDNA driven by a heat shock protein 70A promoter and a RUBISCO SSU 2 promoter, was transferred into the protoplast of marine microalga Nannochloropsis oculata (Droop) D. J. Hibberd by electroporation. Four transgenic clones were obtained in which the transferred phr‐YPGHc was integrated into the genome and existed stably at least until the 50th generation. When we treated these transgenic microalgae by heat shock, the heterologous fish GH was produced in the amount of 0.42 to 0.27 μg · mL?1 from the 50 mL of medium. We incubated artemia with the wildtype and transgenic N. oculata for 6 h and then fed these microalgae‐treated artemia to red‐tilapia larvae. After feeding, the growth of larvae that were fed artemia incubated with transgenic microalgae was greater (i.e., statistically significant: P < 0.05) than that of larvae that were fed artemia incubated with nontransgenic microalgae: 316% versus 104% in weight gain, and 217% versus 146% in body length increase, respectively. Therefore, the N. oculata enables production of functional GH, and we propose that it might be an excellent bioreactor material.  相似文献   

17.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

18.
In slow mainstream flows (<4–6 cm · s?1), the transport of dissolved nutrients to seaweed blade surfaces is reduced due to the formation of thicker diffusion boundary layers (DBLs). The blade morphology of Macrocystis pyrifera (L.) C. Agardh varies with the hydrodynamic environment in which it grows; wave‐exposed blades are narrow and thick with small surface corrugations (1 mm tall), whereas wave‐sheltered blades are wider and thinner with large (2–5 cm) edge undulations. Within the surface corrugations of wave‐exposed blades, the DBL thickness, measured using an O2 micro‐optode, ranged from 0.67 to 0.80 mm and did not vary with mainstream velocities between 0.8 and 4.5 cm · s?1. At the corrugation apex, DBL thickness decreased with increasing seawater velocity, from 0.4 mm at 0.8 cm · s?1 to being undetectable at 4.5 cm · s?1. Results show how the wave‐exposed blades trap fluid within the corrugations at their surface. For wave‐sheltered blades at 0.8 cm · s?1, a DBL thickness of 0.73 ± 0.31 mm within the edge undulation was 10‐fold greater than at the undulation apex, while at 2.1 cm · s?1, DBL thicknesses were similar at <0.07 mm. Relative turbulence intensity was measured using an acoustic Doppler velocimeter (ADV), and overall, there was little evidence to support our hypothesis that the edge undulations of wave‐sheltered blades increased turbulence intensity compared to wave‐exposed blades. We discuss the positive and negative effects of thick DBLs at seaweed surfaces.  相似文献   

19.
Hydrogen and methane were simultaneously produced in a two‐phase reactor, operated to separate the reactions of hydrogen and methanogen production. Each reactor was inoculated with a seed enriched with different microbial consortia. The first phase was operated with a hydraulic retention time of 7 days and at an organic loading rate of 7.7 g VS L?1 d?1 that produced a stable pH of 5.5. This suppressed the growth of methanogens and as a result, the off gas contained up to 27% hydrogen. The second phase was operated with a hydraulic retention time of 12 days and at an organic loading rate of 3.6 g VS L?1 d?1. This permitted the growth of hydrogenotrophs and methanogens to produce methane at a concentration of 60%. Examination of the microbial population of the two reactors both microscopically and using PCR, showed an effective separation of hydrogen‐ and methane‐producing microbial communities. The study revealed that the suppression of hydrogentrophs and methanogens can be achieved by adopting rapid method that leads the growth of hydrogen‐ and methane‐producing granules in phase‐separated anaerobic environment.  相似文献   

20.
A strong biomass increase of two Anabaena species was observed in natural plankton community enclosed into nine large mesocosms (51 m3) and manipulated with mineral nutrients and an organic carbon source during a 3‐week period in the coastal Baltic Sea. The water column and settled material from the bottom of the mesocosms were sampled at 2‐day intervals. Planktonic populations of Anabaena lemmermannii Richter and A. cylindrica Lemmermann and sedimentation rates of akinetes to the bottom were quantified. Comparing mesocosms with artificially induced nitrogen and phosphorus limitation, we found that during the third week of the experiment, the population size of A. lemmermannii was clearly higher in nitrogen‐limited units (by a factor of 2.4), whereas the production rate of akinetes was higher in the phosphorus‐limited units (by a factor of 2.5). Input of freshly produced A. lemmermannii akinetes to the benthos was on average 15 × 106 and 6 × 106 cells· m?2·d?1 in the P? and N? limited mesocosms, respectively. Our estimates of specific akinete production rate of A. lemmermannii in P? and N? limited mesocosms revealed an even larger divergence (a factor of 5.5), being on average 2.4 and 0.4 akinetes·10?3 vegetative cells?1·d?1, respectively. The phosphorus addition effectively reduced akinete production of A. lemmermannii. Differences in the nutrient manipulation had no apparent effect on the biomass and akinete production of A. cylindrica. The akinete production pattern of A. cylindrica revealed a 1‐week delay compared with the vegetative population peak, whereas such a delay was not obvious in A. lemmermannii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号