首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The American chestnut (Castanea dentata (Marshall) Borkh.), once a major component of eastern forests from Maine to Georgia, was functionally removed from the forest ecosystem by chestnut blight (an exotic fungal disease caused by Cryphonectria parasitica (Murr.) Barr), first identified at the beginning of the twentieth century. Hybrid‐backcross breeding programs that incorporate the blight resistance of Chinese chestnut (Castenea mollissima Blume) and Japanese chestnut (Castenea crenata Sieb. & Zuc.) into American chestnut stock show promise for achieving the blight resistance needed for species restoration. However, it is uncertain if limitations in tissue cold tolerance within current breeding programs might restrict the restoration of the species at the northern limits of American chestnut's historic range. Shoots of American chestnut and hybrid‐backcross chestnut (i.e., backcross chestnut) saplings growing in two plantings in Vermont were tested during November 2006, February 2007, and April 2007 to assess their cold tolerance relative to ambient low temperatures. Shoots of two potential native competitors, northern red oak (Quercus rubra L.) and sugar maple (Acer saccharum L.), were also sampled for comparison. During the winter, American and backcross chestnuts were approximately 5°C less cold tolerant than red oak and sugar maple, with a tendency for American chestnut to be more cold tolerant than the backcross chestnut. Terminal shoots of American and backcross chestnut also showed significantly more freezing damage in the field than nearby red oak and sugar maple shoots, which showed no visible injury.  相似文献   

2.
American chestnut (Castanea dentata) was a dominant species in eastern North America prior to the importation of chestnut blight. In light of recent efforts to restore viable populations of chestnut in eastern forests, an increased understanding of its association with other co‐occurring, disturbance‐adapted oak species is necessary. We evaluated crown architecture and leaf morphology in juvenile chestnut and red oak (Quercus rubra) to assess potential differences in establishment strategies of both species. We also investigated differences in nonstructural carbohydrate reserves and whole tree biomass partitioning between species. Seedlings of both species were planted in forest stands treated either with midstory removal or small patch cuts, simulating potential restoration plantings. After 5–7 years, chestnut's allocation to its root system was lower than red oak's, with chestnut saplings instead diverting resources to branches and foliage. Chestnut had lower leaf area index, greater crown projection area, and higher specific leaf area than red oak, indicating the species may have an advantage in shaded understories. There were only minor differences in nonstructural root carbohydrate reserves, between red oak and American chestnut, indicating that chestnut may respond similarly to oak by resprouting after disturbances topkill young saplings. We suggest that American chestnut has morphological and physiological attributes that allow it to function as an opportunistic and plastic species that can utilize gaps to facilitate its canopy recruitment, yet still persist after occasional surface fire. This knowledge can guide restoration strategies for this iconic species of the eastern temperate forest region.  相似文献   

3.
Efforts are underway to return the American chestnut (Castanea dentata) to eastern forests of North America following its decline due to the introduction of the chestnut blight (Cryphonectria parasitica). Approaches include developing blight‐resistant chestnut lines through breeding programs and via genetic engineering. Reestablishment of resistant chestnut to eastern forests would produce one of the most extensive ecological restoration transformations ever attempted. However, this undertaking is costly and optimization of reintroduction methods is needed. We used the computer program NEWGARDEN to model whether some patterns of founder placement (regular vs. random spacing at differing densities) produce more rapidly expanding populations across a range of gene dispersal distance conditions (via both offspring and pollen). For a simulated introduction project employing 169 founders, placing founders randomly in a square of side 0.85 km produced higher rates of predicted population growth compared with larger or smaller squares under near gene dispersal conditions; this side distance was 1.0 km under far gene dispersal conditions. After 100 population bouts of mating and under near gene dispersal conditions, the trial with founder placement producing the greatest population expansion rate exhibited a 314% increase in census size compared with the founder pattern yielding the slowest expansion. Neither loss of alleles nor inbreeding or subdivision was significantly increased under the founder placement patterns yielding the most descendants. Exploring different numerical and geometrical founding scenarios using NEWGARDEN can provide first estimates of founding patterns or stand manipulations that will return the most descendants produced per founder planted in restoration projects.  相似文献   

4.
Granivorous rodent populations in deserts are primarily regulated through precipitation‐driven resource pulses rather than pulses associated with mast‐seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast‐seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the Mojave–Great Basin Desert transition zone. In a 5‐year study at Arches National Park, Utah, USA, we quantified spatiotemporal variation in seed resources in mast and intermast years in blackbrush‐dominated and mixed desert vegetation and measured responses of Dipodomys ordii (Ord's kangaroo rat) and Perognathus flavescens (plains pocket mouse). In blackbrush‐dominated vegetation, blackbrush seeds comprised >79% of seed production in a mast year, but 0% in the first postmast year. Kangaroo rat abundance in blackbrush‐dominated vegetation was highest in the mast year, declined sharply at the end of the first postmast summer, and then remained at low levels for 3 years. Pocket mouse abundance was not as strongly associated with blackbrush seed production. In mixed desert vegetation, kangaroo rat abundance was higher and more uniform through time. Kangaroo rats excluded the smaller pocket mice from resource‐rich patches including a pipeline disturbance and also moved their home range centers closer to this disturbance in a year of low blackbrush seed production. Home range size for kangaroo rats was unrelated to seed resource density in the mast year, but resource‐poor home ranges were larger (< 0.001) in the first postmast year, when resources were limiting. Blackbrush seeds are higher in protein and fat but lower in carbohydrates than the more highly preferred seeds of Indian ricegrass (Achnatherum hymenoides) and have similar energy value per unit of handling time. Kangaroo rats cached seeds of these two species in similar spatial configurations, implying that they were equally valued as stored food resources. Blackbrush mast is a key resource regulating populations of kangaroo rats in this ecosystem.  相似文献   

5.
Vidar Selås 《Ecography》2000,23(6):651-658
Historical data on two plant‐herbivore interactions from southern Norway were used to test the hypothesis that the degree of herbivore outbreaks in post‐mast years is negatively related to summer temperatures in the mast year, because plants are more depressed after a high seed production if temperatures and thus the photosynthetic activity is low. The plant species were the sessile oak Quercus petraea and the bilberry Vaceinium myrtillus. For the former species post‐mast years were identified from reports given by the local forest authorities for the period 1930–48, and from acorn export curves for the period 1949–98, For the latter species, post‐mast years were identified mainly from bilberry export curves for the period 1920–31, from game reports for the period 1932–78. and from diary notes for the period 1979–87. The herbivore species used were the green oak leaf roller moth Tortrix viridana and the capercaillie Tetrao urogallus. Eight moth outbreaks on oak forests were reported by the forest authorities in the period 1930–98, and they all started in a post‐mast year of the sessile oak. There were however also eleven post‐mast years without moth outbreaks. According to game reports, observations and autumn counts, all increases in the autumn population size of capercaillie during 1920 88 occurred in or after a year with high bilberry production. Among i8 post‐mast years, there were seven with strong increase, seven with slight or moderate increase, and four with no increase. For both herbivore species, post‐mast years with marked population increases had significantly lower summer temperatures in the preceding (mast) year than had post‐mast years with no or slight increases. For moth populations there also was a negative effect of high temperatures in April, possibly because moth eggs tend to hatch too early relative lo budburst if spring temperatures are high. For the capercaillie, high amount of precipitation in June – July seemed to have some negative impact on the autumn population sizes, as also found in previous studies.  相似文献   

6.
Recent field trials on blight‐resistant hybrids (BC3F3) of American chestnut (Castanea dentata) and Chinese chestnut (C. mollissima) have intensified planning for widespread restoration of Castanea to eastern U.S. forests. Restoration will likely rely on natural seed dispersal from sites planted with chestnut; however, we do not know how dispersal agents such as granivorous rodents will respond to hybrid chestnuts. At one extreme, excessive seed consumption may impede restoration. Alternatively, scatter‐hoarding rodents might facilitate the spread of chestnut by dispersal of seeds from restoration plantings. We conducted trials with five rodent species to quantify foraging preferences and to evaluate the potential role of granivores in chestnut restoration. Specifically, we presented seeds from American and hybrid chestnuts (BC3F2) with other common mast species and recorded the proportion of seeds removed and the fates of tagged seeds. Mice, chipmunks, and flying squirrels harvested both chestnut types preferentially over larger, tougher black walnut, hickory, and red oak seeds, but fox squirrels and eastern gray squirrels preferred larger seeds to chestnuts. All rodents consumed a greater proportion of the chestnuts than other seed types. American and hybrid chestnut also differed in important ways: except for fox squirrels, rodents preferentially removed American chestnuts over hybrid chestnuts, but we estimated that fox squirrels carried a greater proportion of hybrid chestnuts beyond our tag search area, suggesting that hybrids may be dispersed farther and cached more often than American chestnut. These differences indicate that hybrid chestnut may not be functionally equivalent to American chestnut with regard to seed–granivore interactions.  相似文献   

7.
Some jurisdictions in the eastern United States have reduced harvest of white-tailed deer (Odocoileus virginianus) because of perceived declines in recruitment and population size over the last decade. Although the restoration of American black bears (Ursus americanus) and the colonization of coyotes (Canis latrans) have increased fawn predation in some areas, limited information exists on how temporally dynamic resources and weather influence fawn survival. Therefore, we evaluated fawn survival probability, cause specific mortality, and if factors such as oak (Quercus spp.) mast abundance, winter severity, precipitation, and landscape composition influenced mortality risk on Marine Corps Base Quantico in northern Virginia, USA, from 2008 to 2019. We tracked 248 fawns outfitted with very high frequency radio-collars and predation was the leading cause of mortality (n = 42; 45%). We estimated survival to 133 days and survival pooling all years (2008–2019) was 0.50 (95% CI = 0.42–0.60). Increased annual red oak (Quercus spp.) mast abundance from the previous fall reduced mortality hazard for fawns. The longevity of our study revealed a link between fawn survival and a specific maternal resource (red oak mast) only available during gestation. Our results highlight the importance of oak mast in eastern deciduous forests and, more broadly, overwinter maternal condition on white-tailed deer recruitment.  相似文献   

8.
Pons J  Pausas JG 《Oecologia》2012,169(3):723-731
In dry areas such as Mediterranean ecosystems, fluctuations in seed production are typically explained by resource (water) availability. However, acorn production in cork oak (Quercus suber) populations shows a very low relationship to weather. Because cork oak trees produce acorns with different maturation patterns (annual and biennial), we hypothesized that acorn production in coexisting individuals with a different dominant acorn maturation type should respond differently to climatic factors and that disaggregating the trees according to their acorn-maturation pattern should provide a more proximal relation to weather factors. We assessed acorn production variability in fragmented cork oak populations of the eastern Iberian Peninsula by counting the total number of acorns in 155 trees during an 8-year period. An initial assessment of acorn production variability in relation to weather parameters yielded very low explained variance (7%). However, after the trees were grouped according to their dominant acorn maturation pattern, weather parameters were found to account for 44% of the variability in acorn crops, with trees with annual acorns exhibiting mast fruiting in years with reduced spring frost and shorter summer droughts and trees with biennial acorns showing the opposite pattern. Thus, conditions that negatively affect annual production could be beneficial for biennial production (and vice versa). The results highlight the importance of the resource-matching hypothesis for explaining acorn production in Quercus suber and suggest that different seed maturation types within a population may allow the species to deal with highly variable weather conditions. They also emphasize the importance of understanding acorn maturation patterns for interpreting masting cycles.  相似文献   

9.
The successful development of early stages of blight‐resistant hybrid stock has increased hopes for restoration of American chestnut (Castanea dentata) to eastern North American forests. However, these forests have undergone substantial ecological change in the century since the functional extirpation of American chestnut, and it remains unknown to what extent American chestnut will be able to recolonize contemporary forests. In particular, high densities of white‐tailed deer (Odocoileus virginianus) and competition with mesophytic tree species such as maple (Acer) may impede chestnut regeneration, much as they affect oak (Quercus). We used a split‐plot analysis of variance (ANOVA) design to examine the effects of canopy gaps and herbivory on survival and growth of third generation backcrossed (BC3) hybrid chestnut seedlings over two growing seasons in central Indiana, U.S.A. Only 4 of 588 (0.7%) seedlings in closed‐canopy plots survived to the end of the study, as opposed to 264 of 589 (45%) seedlings in gap plots. Within the gap treatment, fencing was associated with reduced chestnut survival as well as reduced herbivory and increased cover of non‐chestnut vegetation. Our results indicate that herbivory may indirectly benefit chestnut regeneration by suppressing competition. However, this beneficial effect is likely context‐dependent and additional work is needed to establish the conditions under which it occurs.  相似文献   

10.
Pleistocene vicariance is often invoked to explain the disjunct populations of animals in habitat refugia throughout the southwestern United States. The combined effects of small population size and isolation from the rest of the contiguous range are thought to result in genetic differentiation of relict organisms. Here, we describe a relict population of dusky‐footed woodrats (Neotoma fuscipes Baird) found in a pinyon‐juniper‐oak community in a small mountain range within the Mojave Desert. We compare morphological and genetic data for these individuals with two populations within the contiguous range, and with another species of woodrat (Neotoma lepida). We also examine the distributional overlap between contemporary oak species and dusky‐footed woodrats, and estimate the potential oak woodland habitat available during the late Quaternary. As expected, both the morphological and genetic analysis confirm that the relict population is N. fuscipes. Within the limitations of our data, we detect no evidence of differentiation. Instead, the relict population forms a paraphyletic group with the nearest population within the contiguous range. This may be explained by the combined influences of a shorter period of isolation and a greater effective population size than was originally expected. The linkage between contemporary oak and dusky‐footed woodrat distributions is very tight, reinforcing the idea of an obligate relationship between the two. We estimate that at ~8000 ybp, pinyon‐juniper‐oak woodlands may have covered ~53% of the central Mojave, forming large contiguous areas of habitat. Although considerably more fragmented, at present ~12% of the area consists of relict woodlands. Our results suggest that there may be numerous other woodrat refugia, with a relatively high degree of connectiveness between the larger ones. Animals within them may effectively function as a single metapopulation, buffering against occasional stochastic extinction events.  相似文献   

11.
Empirical support for the genetic management strategies employed by captive breeding and reintroduction programs is scarce. We evaluated the genetic management plan for the highly endangered black‐footed ferret (Mustela nigripes) developed by the American Zoo and Aquarium Associations (AZA) as a part of the species survival plan (SSP). We contrasted data collected from five microsatellite loci to predictions from a pedigree‐based kinship matrix analysis of the captive black‐footed ferret population. We compared genetic diversity among captive populations managed for continued captive breeding or reintroduction, and among wild‐born individuals from two reintroduced populations. Microsatellite data gave an accurate but only moderately precise estimate of heterozygosity. Genetic diversity was similar in captive populations maintained for breeding and release, and it appears that the recovery program will achieve its goal of maintaining 80% of the genetic diversity of the founder population over 25 years. Wild‐born individuals from reintroduced populations maintained genetic diversity and avoided close inbreeding. We detected small but measurable genetic differentiation between the reintroduced populations. The model of random mating predicted only slightly lower levels of heterozygosity retention compared to the SSP strategy. The random mating strategy may be a viable alternative for managing large, stable, captive populations such as that of the black‐footed ferret. Zoo Biol 22:287–298, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

12.
Oak reproduction is characterized by mast seeding with high inter-annual fluctuations in fruit production. Such resource pulses can greatly affect ecosystem functioning and may cause seed consumers to alter their mobility, demography, or diet. Consequences of mast seeding for seed consumers remain poorly understood as their long timescale makes them difficult to study. We investigated impacts of oak mast seeding on the feeding behavior of two sympatric European deer species: red deer (Cervus elaphus) and roe deer (Capreolus capreolus). We analyzed their rumen content over a 31-year period in tandem with 10 years of data on oak fructification (i.e. 8 years of field monitoring and two modelled years). Acorn production is strongly correlated with consumption by both deer species. In years of high fructification, acorns represent more than 50% and 35% of red and roe deer diet, respectively, confirming assumptions that deer favor acorns when these are available. Red deer eat more acorns than roe deer both between and within years. High acorn production in mast years appears to saturate the capacity of deer to consume acorns. As the proportion of acorns increase in their diet, red deer eat more grasses and less conifer browse. No dietary shift was found for roe deer. By inducing dietary shifts in consumers, oak mast seeding can have cascading effects on ecosystem processes, notably on the damages on conifers caused by red deer and the consequences for forest dynamics.  相似文献   

13.
Although bears may expand their home ranges in times of low food availability, it is unclear what mechanisms directly affect home range extension in times of low mast production in Japanese forests. To clarify the relationship between home range utilization by Japanese black bears (Ursus thibetanus) and abundance and distribution of mast production, we collected data on habitat use from 13 bears (6 M and 7 F) fitted with Global Positioning System (GPS) collars equipped with activity sensors in the Ashio-Nikko Mountains on the eastern part of Honshu Island, Japan, during 2006–2008. We also collected data on mast production by 5 Fagaceae species. We categorized each fall as either poor (2006) or relatively-good (2007 and 2008) based on mast production. Bears used small patches in their large home ranges and the distances between core areas increased in the fall of 2006, when the mast of Japanese oak (Quercus crispula) were poorly distributed. Our findings suggest that localized patches of Japanese oak are the staple food for bears in our study area, even in poor mast years. However, in the fall of 2006, we also found that bears moved to lower elevations, relative to 2007 and 2008, in search of alternative foods (e.g., Konara oak [Q. serrata] and Japanese chestnut [Castanea crenata]), which were mostly at lower elevations and produced mast consistently over the study period. Our results suggest that dispersion and elevational distribution of mast-producing trees affect bear habitat use in fall, as well as amount of mast. © 2011 The Wildlife Society.  相似文献   

14.
Abstract: Although there is a quantitative method that is commonly used for identifying mast‐seeding behaviour of a plant population based on the coefficient of variation (i.e. CV is standard deviation/mean>1), there is no general quantitative method for delineating “mast” as opposed to “non‐mast” years. Mast years are, however, described qualitatively as years when “large”, “unusually large” and “high” seed production occurs. The use of a consistent and generally applicable method for delineating mast years across species and plant populations is important for synthesizing knowledge of the causes and consequences of mast seeding, which could be confounded by using different methods among studies. We examine six quantitative methods for identifying mast years: four methods from the literature and two methods developed here. We use 36 seed production datasets covering a variety of species with ≥10 years of data to test the performance of these six methods. For each method, we quantify the percentage of the datasets to which the method could be successfully applied, the magnitude of the mast year relative to the mean, the frequency of mast years and the occurrence of consecutive mast years. The majority of the methods failed to meet the criteria for a suitable method. The best method used the number of standard deviates (standardized deviate method) of the annual mean seed production from the long‐term mean of the dataset to identify mast‐seeding years. General results from the standardized deviate method include that the occurrence of mast‐seeding years is largely unrelated to plant population CV, but similar across species and data collection methods.  相似文献   

15.
Without canopy-opening fire disturbances, shade-tolerant, fire-sensitive species like red maple (Acer rubrum L.) proliferate in many historically oak-dominated forests of the eastern U.S. Here, we evaluate potential implications of increased red maple dominance in upland oak forests of Kentucky on rates of leaf litter decomposition and nitrogen (N) cycling. Over 5 years, we evaluated mass loss of leaf litter and changes in total N and carbon (C) within six leaf litter treatments comprised of scarlet oak, chestnut oak, and red maple, and three mixed treatments of increasing red maple contribution to the leaf litter pool (25, 50, and 75% red maple). Over a 1.5-year period, we conducted a plot-level leaf litter manipulation study using the same treatments plus a control and assessed changes in net nitrification, ammonification, and N mineralization within leaf litter and upper (0–5 cm depth) mineral soil horizons. Red maple leaf litter contained more “fast” decomposing material and initially lost mass faster than either oak species. All litter treatments immobilized N during initial stages of decomposition, but the degree of immobilization decreased with decreasing red maple contribution. The leaf litter plot-level experiment confirmed slower N mineralization rates for red maple only plots compared to chestnut oak plots. As red maple increases, initial leaf litter decomposition rates will increase, leading to lower fuel loads and more N immobilization from the surrounding environment. These changes may reduce forest flammability and resource availability and promote red maple expansion and thereby the “mesophication” of eastern forests of the U.S.  相似文献   

16.
  • Context‐dependency in species interactions is widespread and can produce concomitant patterns of context‐dependent selection. Masting (synchronous production of large seed crops at irregular intervals by a plant population) has been shown to reduce seed predation through satiation (reduction in rates of seed predation with increasing seed cone output) and thus represents an important source of context‐dependency in plant‐animal interactions. However, the evolutionary consequences of such dynamics are not well understood.
  • Here we describe masting behaviour in a Mediterranean model pine species (Pinus pinaster) and present a test of the effects of masting on selection by seed predators on reproductive output. We predicted that masting, by enhancing seed predator satiation, could in turn strengthen positive selection by seed predators for larger cone output. For this we collected six‐year data (spanning one mast year and five non‐mast years) on seed cone production and seed cone predation rates in a forest genetic trial composed by 116 P. pinaster genotypes.
  • Following our prediction, we found stronger seed predator satiation during the masting year, which in turn led to stronger seed predator selection for increased cone production relative to non‐masting years.
  • These findings provide evidence that masting can alter the evolutionary outcome of plant‐seed predator interactions. More broadly, our findings highlight that changes in consumer responses to resource abundance represent a widespread mechanism for predicting and understanding context dependency in plant‐consumer evolutionary dynamics.
  相似文献   

17.
Many forests of eastern North American are undergoing a species composition shift in which maples (Acer spp.) are increasingly important while oak (Quercus spp.) regeneration and recruitment has become increasingly scarce. This dynamic in species composition occurs across a large and geographically complex region. The elimination of fire has been postulated as the driver of this dynamic; however, some assumptions underlying this postulate have not been completely examined, and alternative hypotheses remain underexplored. Through literature review, and a series of new analyses, we examined underlying assumptions of the “oak and fire” hypothesis and explored a series of alternative hypotheses based on well‐known ecosystem drivers: climate change, land‐use change, the loss of foundation and keystone species, and dynamics in herbivore populations. We found that the oak–maple dynamic began during a shift in climate regime‐from a time of frequent, severe, multi‐year droughts to a period of increased moisture availability. Anthropogenic disturbance on the landscape changed markedly during this same time, from an era of Native American utilization, to a time characterized by low population densities, to Euro‐American settlement and subsequent land transmogrification. During the initiation of the oak‐maple dynamic, a foundation species, the American chestnut, was lost as a canopy tree across a broad range. Several important browsers and acorn predators had substantial population dynamics during this period, e.g. white‐tailed deer populations grew substantially concurrent with increasing oak recruitment failure. In conclusion, our analyses suggest that oak forests are reacting to marked changes in a suite of interlocking factors. We propose a “multiple interacting ecosystem drivers hypothesis”, which provides a more encompassing framework for understanding oak forest dynamics.  相似文献   

18.
Acorn production varies considerably among oak (Quercus) species, individual trees, years, and locations, which directly affects oak regeneration and populations of wildlife species that depend on acorns for food. Hard mast indices provide a relative ranking and basis for comparison of within- and between-year acorn crop size at a broad scale, but do not provide an estimate of actual acorn yield—the number of acorns that can potentially be produced on a given land area unit based on the species, number, and diameter at breast height (dbh) of oak trees present. We used 10 years of acorn production data from 475 oak trees to develop predictive models of potential average annual hard mast production by five common eastern oak species, based on tree diameter and estimated crown area. We found a weak (R2 = 0.08–0.28) relationship between tree dbh and acorn production per unit crown area for most species. The relationship between tree dbh and acorn production per tree was stronger (R2 = 0.33–0.57). However, this is because larger-dbh trees generally have larger crowns, not because they have a greater capacity to produce more acorns per unit crown area. Acorn production is highly variable among individual trees. We estimated that dbh of at least 60 dominant or codominant oak trees per species should be randomly sampled to obtain an adequate representation of the range of dbhs (≥12.7 cm dbh) in a given forest area, and achieve precise estimates when using these equations to predict potential acorn production. Our predictive models provide a tool for estimating potential acorn production that land managers and forest planners can apply to oak inventory data to tailor estimates of potential average annual acorn production to different forest management scenarios and multiple spatial scales. © 2011 The Wildlife Society.  相似文献   

19.
Aim We assessed population differentiation and gene flow across the range of the blue‐footed booby (Sula nebouxii) (1) to test the generality of the hypothesis that tropical seabirds exhibit higher levels of population genetic differentiation than their northern temperate counterparts, and (2) to determine if specialization to cold‐water upwelling systems increases dispersal, and thus gene flow, in blue‐footed boobies compared with other tropical sulids. Location Work was carried out on islands in the eastern tropical Pacific Ocean from Mexico to northern Peru. Methods We collected samples from 173 juvenile blue‐footed boobies from nine colonies spanning their breeding distribution and used molecular markers (540 base pairs of the mitochondrial control region and seven microsatellite loci) to estimate population genetic differentiation and gene flow. Our analyses included classic population genetic estimation of pairwise population differentiation, population growth, isolation by distance, associations between haplotypes and geographic locations, and analysis of molecular variance, as well as Bayesian analyses of gene flow and population differentiation. We compared our results with those for other tropical seabirds that are not specialized to cold‐water upwellings, including brown (Sula leucogaster), red‐footed (S. sula) and masked (S. dactylatra) boobies. Results Blue‐footed boobies exhibited weak global population differentiation at both mitochondrial and nuclear loci compared with all other tropical sulids. We found evidence of high levels of gene flow between colonies within Mexico and between colonies within the southern portion of the range, but reduced gene flow between these regions. We also found evidence for population growth, isolation by distance and weak phylogeographic structure. Main conclusions Tropical seabirds can exhibit weak genetic differentiation across large geographic distances, and blue‐footed boobies exhibit the weakest population differentiation of any tropical sulid studied thus far. The weak population genetic structure that we detected in blue‐footed boobies may be caused by increased dispersal, and subsequently increased gene flow, compared with other sulids. Increased dispersal by blue‐footed boobies may be the result of the selective pressures associated with cold‐water upwelling systems, to which blue‐footed boobies appear specialized. Consideration of foraging environment may be particularly important in future studies of marine biogeography.  相似文献   

20.
Previously we showed in laboratory studies that the fungivorus nematode, Aphelenchoides hylurgi, was attracted to and fed upon the chestnut blight fungus, Cryphonectria parasitica, from American chestnut bark cankers and was a carrier of biocontrol, white hypovirulent C. parasitica strains. In the present field study, we recovered Aphelenchoides spp. in almost all (97.0 %) of 133 blight canker tissue assays (three 5-g samples each) from four eastern states. High mean population densities (227 to 474 nematodes per 5 g tissue) of Aphelenchoides spp. were recovered from cankers in Virginia, West Virginia, and Tennessee but not from New Hampshire (mean = 75 nematodes per 5 g tissue). Overall, most canker assays yielded population densities less than 200 nematodes per 5 g tissue. All of 12 very small or young cankers yielded a few to many Aphelenchoides spp. Regression analysis indicated greatest recovery of Aphelenchoides spp. occurred in the month of May (r = 0.94). The results indicate that Aphelenchoides spp. appear to be widespread in blight cankers on American chestnut trees and could play a role in biocontrol of chestnut blight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号