共查询到20条相似文献,搜索用时 0 毫秒
1.
Kendra M. Gurney Paul G. Schaberg Gary J. Hawley John B. Shane 《Restoration Ecology》2011,19(1):55-63
The American chestnut (Castanea dentata (Marshall) Borkh.), once a major component of eastern forests from Maine to Georgia, was functionally removed from the forest ecosystem by chestnut blight (an exotic fungal disease caused by Cryphonectria parasitica (Murr.) Barr), first identified at the beginning of the twentieth century. Hybrid‐backcross breeding programs that incorporate the blight resistance of Chinese chestnut (Castenea mollissima Blume) and Japanese chestnut (Castenea crenata Sieb. & Zuc.) into American chestnut stock show promise for achieving the blight resistance needed for species restoration. However, it is uncertain if limitations in tissue cold tolerance within current breeding programs might restrict the restoration of the species at the northern limits of American chestnut's historic range. Shoots of American chestnut and hybrid‐backcross chestnut (i.e., backcross chestnut) saplings growing in two plantings in Vermont were tested during November 2006, February 2007, and April 2007 to assess their cold tolerance relative to ambient low temperatures. Shoots of two potential native competitors, northern red oak (Quercus rubra L.) and sugar maple (Acer saccharum L.), were also sampled for comparison. During the winter, American and backcross chestnuts were approximately 5°C less cold tolerant than red oak and sugar maple, with a tendency for American chestnut to be more cold tolerant than the backcross chestnut. Terminal shoots of American and backcross chestnut also showed significantly more freezing damage in the field than nearby red oak and sugar maple shoots, which showed no visible injury. 相似文献
2.
Jared W. Westbrook Qian Zhang Mihir K. Mandal Eric V. Jenkins Laura E. Barth Jerry W. Jenkins Jane Grimwood Jeremy Schmutz Jason A. Holliday 《Evolutionary Applications》2020,13(1):31-47
American chestnut was once a foundation species of eastern North American forests, but was rendered functionally extinct in the early 20th century by an exotic fungal blight (Cryphonectria parasitica). Over the past 30 years, the American Chestnut Foundation (TACF) has pursued backcross breeding to generate hybrids that combine the timber‐type form of American chestnut with the blight resistance of Chinese chestnut based on a hypothesis of major gene resistance. To accelerate selection within two backcross populations that descended from two Chinese chestnuts, we developed genomic prediction models for five presence/absence blight phenotypes of 1,230 BC3F2 selection candidates and average canker severity of their BC3F3 progeny. We also genotyped pure Chinese and American chestnut reference panels to estimate the proportion of BC3F2 genomes inherited from parent species. We found that genomic prediction from a method that assumes an infinitesimal model of inheritance (HBLUP) has similar accuracy to a method that tends to perform well for traits controlled by major genes (Bayes C). Furthermore, the proportion of BC3F2 trees' genomes inherited from American chestnut was negatively correlated with the blight resistance of these trees and their progeny. On average, selected BC3F2 trees inherited 83% of their genome from American chestnut and have blight resistance that is intermediate between F1 hybrids and American chestnut. Results suggest polygenic inheritance of blight resistance. The blight resistance of restoration populations will be enhanced through recurrent selection, by advancing additional sources of resistance through fewer backcross generations, and by potentially by breeding with transgenic blight‐tolerant trees. 相似文献
3.
Jill M. Shephard Rob Ogden Piotr Tryjanowski Ola Olsson Peter Galbusera 《Ecology and evolution》2013,3(15):4881-4895
European white stork are long considered to diverge to eastern and western migration pools as a result of independent overwintering flyways. In relatively recent times, the western and northern distribution has been subject to dramatic population declines and country‐specific extirpations. A number of independent reintroduction programs were started in the mid 1950s to bring storks back to historical ranges. Founder individuals were sourced opportunistically from the Eastern and Western European distributions and Algeria, leading to significant artificial mixing between eastern and western flyways. Here we use mitochondrial and microsatellite DNA to test the contention that prior to translocation, eastern and western flyways were genetically distinct. The data show a surprising lack of structure at any spatial or temporal scale suggesting that even though birds were moved between flyways, there is evidence of natural mixing prior to the onset of translocation activities. Overall a high retention of genetic diversity, high Nef, and an apparent absence of recent genetic bottleneck associated with early 20th century declines suggest that the species is well equipped to respond to future environmental pressures. 相似文献
4.
Population dynamics of small mammals at Mlawula, Swaziland 总被引:2,自引:0,他引:2
Population density, biomass and composition of a small mammal community in an Acacia nigrescens savanna were studied over 12 months from August 2000. The community consisted of Mus minutoides (A. Smith 1834), Mastomys natalensis (A. Smith 1834), Lemniscomys rosalia (Thomas 1904), Crocidura hirta (Peters 1952), Steatomys pratensis (Peters 1846); and on one occasion, Graphiurus murinus (Desmarest 1822) was caught. M. minutoides was the dominant species in the site. Species richness was found to vary significantly with the time of the year. The density of M. minutoides was significantly high in winter and low in the other seasons, the ratio of males to females was found to be equal, and pregnant females were caught from November to May. The biomass of small mammals in the area (also density and numbers) was generally low (mean biomass 212 g ha?1). The occurrence of new individuals in catches remained high throughout the study, suggesting a high mortality or emigration rate or a combination of the two. 相似文献
5.
Magnus Magnusson Arvid Bergsten Frauke Ecke Örjan Bodin Lennart Bodin Birger Hörnfeldt 《Ecology and evolution》2013,3(13):4365-4376
Forestry is continually changing the habitats for many forest‐dwelling species around the world. The grey‐sided vole (Myodes rufocanus) has declined since the 1970s in forests of northern Sweden. Previous studies suggested that this might partly be caused by reduced focal forest patch size due to clear‐cutting. Proximity and access to old pine forest and that microhabitats often contains stones have also been suggested previously but never been evaluated at multiple spatial scales. In a field study in 2010–2011 in northern Sweden, we investigated whether occurrence of grey‐sided voles would be higher in (1) large focal patches of >60 years old forest, (2) in patches with high connectivity to surrounding patches, and (3) in patches in proximity to stone fields. We trapped animals in forest patches in two study areas (Västerbotten and Norrbotten). At each trap station, we surveyed structural microhabitat characteristics. Landscape‐scale features were investigated using satellite‐based forest data combined with geological maps. Unexpectedly, the vole was almost completely absent in Norrbotten. The trap sites in Norrbotten had a considerably lower amount of stone holes compared with sites with voles in Västerbotten. We suggest this might help to explain the absence in Norrbotten. In Västerbotten, the distance from forest patches with voles to stone fields was significantly shorter than from patches without voles. In addition, connectivity to surrounding patches and size of the focal forest patches was indeed related to the occurrence of grey‐sided voles, with connectivity being the overall best predictor. Our results support previous findings on the importance of large forest patches, but also highlight the importance of connectivity for occurrence of grey‐sided voles. The results further suggest that proximity to stone fields increase habitat quality of the forests for the vole and that the presence of stone fields enhances the voles' ability to move between nearby forest patches through the matrix. 相似文献
6.
Rita M. Blythe Nathanael I. Lichti Timothy J. Smyser Robert K. Swihart 《Restoration Ecology》2015,23(4):473-481
Recent field trials on blight‐resistant hybrids (BC3F3) of American chestnut (Castanea dentata) and Chinese chestnut (C. mollissima) have intensified planning for widespread restoration of Castanea to eastern U.S. forests. Restoration will likely rely on natural seed dispersal from sites planted with chestnut; however, we do not know how dispersal agents such as granivorous rodents will respond to hybrid chestnuts. At one extreme, excessive seed consumption may impede restoration. Alternatively, scatter‐hoarding rodents might facilitate the spread of chestnut by dispersal of seeds from restoration plantings. We conducted trials with five rodent species to quantify foraging preferences and to evaluate the potential role of granivores in chestnut restoration. Specifically, we presented seeds from American and hybrid chestnuts (BC3F2) with other common mast species and recorded the proportion of seeds removed and the fates of tagged seeds. Mice, chipmunks, and flying squirrels harvested both chestnut types preferentially over larger, tougher black walnut, hickory, and red oak seeds, but fox squirrels and eastern gray squirrels preferred larger seeds to chestnuts. All rodents consumed a greater proportion of the chestnuts than other seed types. American and hybrid chestnut also differed in important ways: except for fox squirrels, rodents preferentially removed American chestnuts over hybrid chestnuts, but we estimated that fox squirrels carried a greater proportion of hybrid chestnuts beyond our tag search area, suggesting that hybrids may be dispersed farther and cached more often than American chestnut. These differences indicate that hybrid chestnut may not be functionally equivalent to American chestnut with regard to seed–granivore interactions. 相似文献
7.
Letícia Sartorato Zanchetta Rita Gomes Rocha Yuri Luiz Reis Leite 《Journal of Zoological Systematics and Evolutionary Research》2019,57(3):632-641
The Atlantic Forest biodiversity hotspot in eastern South America has been the focus of several phylogeographic studies concerning relationships between populations and areas and how taxa respond to environmental changes. We infer and compare the demographic and biogeographic histories of two didelphid marsupial species, Gracilinanus microtarsus and Marmosops incanus, from the Atlantic Forest of eastern Brazil to determine how these species responded to environmental changes over time, using mitochondrial and nuclear DNA sequences. We found great intraspecific genetic divergence in both species and a strong geographic structure related to similar and spatially cohesive groups within each species. These groups are consistent with the same topographical barriers, such as mountains and river valleys. Intraspecific clades are very old, dating back to a period of tectonic activities in the Neogene (5.39–8.57 Mya). Changes in the environment over the last 7 million years lead to fairly concordant demographic changes in both marsupial species, including population expansion during the last glacial maximum (ca. 21,000 years ago) or last interglacial (ca. 120,000 years ago) or both. These results do not fit the Pleistocene refuge hypothesis as an explanation of the historical biogeography and diversification of both species in the Atlantic Forest, but are compatible with the Atlantis Forest hypothesis. 相似文献
8.
Joshua D. Day Jackson H. Birrell Tyson J. Terry Amy Clark Phil Allen Samuel B. St. Clair 《Ecology and evolution》2019,9(10):6052-6067
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities. 相似文献
9.
J. Xia J. Lu Z. X. Wang B. B. Hao H. B. Wang G. H. Liu 《Plant biology (Stuttgart, Germany)》2013,15(2):376-383
Small populations may suffer more severe pollen limitation and result in Allee effects. Sex ratio may also affect pollination and reproduction success in dioecious species, which is always overlooked when performing conservation and reintroduction tasks. In this study, we investigated whether and how population size and sex ratio affected pollen limitation and reproduction in the endangered Ottelia acuminata, a dioecious submerged species. We established experimental plots with increasing population size and male sex ratio. We observed insect visitation, estimated pollen limitation by hand‐pollinations and counted fruit set and seed production per fruit. Fruit set and seed production decreased significantly in small populations due to pollinator scarcity and thus suffered more severe pollen limitation. Although frequently visited, female‐biased larger populations also suffered severe pollen limitation due to few effective visits and insufficient pollen availability. Rising male ratio enhanced pollination service and hence reproduction. Unexpectedly, pollinator preferences did not cause reduced reproduction in male‐biased populations because of high pollen availability. However, reproductive outputs showed more variability in severe male‐biased populations. Our results revealed two component Allee effects in fruit set and seed production, mediated by pollen limitation in O. acuminata. Moreover, reproduction decreased significantly in larger female‐biased populations, increasing the risk of an Allee effect. 相似文献
10.
Jonathan M. Conard Mark J. Statham Philip S. Gipson Samantha M. Wisely 《Restoration Ecology》2010,18(Z1):85-93
Reintroduction of terrestrial vertebrates with the goal of ecosystem restoration typically establishes small and isolated populations that may experience reduced genetic variability due to founder effects and genetic drift. Understanding the genetic structure of these populations and maintaining adequate genetic diversity is important for long‐term restoration success. We quantified genetic variability at six microsatellite loci for a reintroduced population of Cervus elaphus (elk) restored to the tallgrass prairie ecosystem of northeastern Kansas. Allelic richness, observed and expected heterozygosity were intermediate to levels reported in other North American elk populations. Current levels of genetic variability in restored North American elk populations were not well explained by founding population size, number of founding populations, or number of years since the last translocation. Simulation results suggest that the retention of genetic variability in isolated populations is strongly influenced by mating system while also being impacted by temporal variability in population size and population growth rate. Our results have implications for understanding how translocation strategies and post‐reintroduction management may influence genetic variability in restored populations. 相似文献
11.
Ebrahim Osdaghi S. Mohsen Taghavi Habiballah Hamzehzarghani Jay Ram Lamichhane 《Journal of Phytopathology》2016,164(10):722-734
We report in this study for the first time the occurrence of bacterial spot of pepper in Iran and both phenotypic and genetic characterization of its causal agent, Xanthomonas euvesicatoria. Pepper plants grown in 15 of 30 surveyed private gardens and commercial fields were infected by the pathogen in Marand County, East Azerbaijan Province, north‐western Iran. The obtained strains of X. euvesicatoria had different amylolytic and pectolytic activities compared with those reported for this species elsewhere. Pathogenicity tests showed that strains isolated from diseased pepper are able to infect tomato, in addition to pepper. Host range of the pathogen was assessed on eight annual plant species including crops and weeds by measuring the population dynamics. The host range assessment showed that in addition to pepper and tomato, known hosts of X. euvesicatoria, the Iranian strains were able to colonize a number of new hosts such as nightshade and common bean. In contrast, none of them were able to build up their population on cowpea, eggplant, bindweed and zucchini. All X. euvesicatoria strains obtained in this study were sensitive to copper sulphate and streptomycin at concentrations higher than 20 and 50 mg/l, respectively. Phylogenetic analyses of the strains using the sequences of gyrB and hrpB genes confirmed their species as X. euvesicatoria. Given a direct commercial trade of fresh solanaceous vegetables between Iran and Turkey, it is hypothesized that the pathogen entered north‐western Iran from eastern parts of Turkey through infected plant materials. Finally, the role of prevention – based on the use of healthy planting materials and resistant and/or tolerant plant varieties – to contain the potential disease epidemics is discussed. 相似文献
12.
Anna Tammilehto Phillip C. Watts Nina Lundholm 《The Journal of eukaryotic microbiology》2017,64(2):248-256
The arctic phytoplankton spring bloom, which is often diatom‐dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample‐specific FST) decreased between time points as the bloom progressed, with the most drastic changes in FST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean HE = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample‐specific FST. On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population. 相似文献
13.
14.
Aphid species within the genus Tuberculatus Mordvilko (Hemiptera: Aphididae) exhibit a variety of interactions with ants, ranging from close associations to non‐attendance. A previous study indicated that despite wing possession, ant‐attended Tuberculatus species exhibited low dispersal rates compared with non‐attended species. This study examined if presence or absence of mutualistic interactions and habitat continuity of host plants affected intraspecific genetic diversity and genetic differentiation in mitochondrial DNA cytochrome oxidase I (COI) sequences. Sympatric ant‐attended Tuberculatus quercicola (Matsumura) (Hemiptera: Aphididae) and non‐attended Tuberculatus paiki Hille Ris Lambers (Hemiptera: Aphididae) were collected from the daimyo oak Quercus dentata Thunberg (Fagales: Fagaceae) in Japan and examined for haplotype variability. Seventeen haplotypes were identified in 568 T. quercicola individuals representing 23 populations and seven haplotypes in 425 T. paiki representing 19 populations. Haplotype diversity, which indicates the mean number of differences between all pairs of haplotypes in the sample, and nucleotide diversity were higher in T. quercicola than T. paiki. Analysis of molecular variance (AMOVA) showed higher genetic differentiation among populations within groups of T. quercicola (39.8%) than T. paiki (22.6%). The effects of attendant ant species on genetic differentiation in T. quercicola were not distinguishable from geographic factors. Despite low dispersal rates, host plant habitat continuity might facilitate widespread dispersal of a T. quercicola haplotype in Hokkaido. These results suggested that following T. quercicola colonization, gene flow among populations was limited, resulting in genetic drift within populations. However, frequent T. paiki dispersal is clearly evident by low genetic differentiation among populations within groups, resulting in lower haplotype diversity. 相似文献
15.
G. K. Awudzi A. R. Cudjoe P. Hadley P. E. Hatcher A. J. Daymond 《Journal of Applied Entomology》2017,141(4):247-255
Mirids (Sahlbergella singularis and Distantiella theobroma) are the most important insect pests affecting cocoa production across West Africa. Understanding the population dynamics of mirids is key to their management; however, the current recommended hand‐height assessment method is labour intensive. The objective of the study was to compare recently developed mirid sex pheromone trapping and visual hand‐height assessment methods as monitoring tools on cocoa farms and to consider implications for a decision support system. Ten farms from the Eastern and Ashanti regions of Ghana were used for the study. Mirid numbers and damage were assessed fortnightly on twenty trees per farm, using both methods, from January 2012 to April 2013. The mirid population increased rapidly in June, reached a peak in September and began to decline in October. There was a significant linear relationship between numbers of mirids sampled to hand‐height and mirid damage. High numbers of male mirids were recorded in pheromone traps between January and April 2012 after which there was a gradual decline. There was a significant inverse relationship between numbers of trapped adult mirids and mirids sampled to hand‐height (predominantly nymphs). Higher temperatures and lower relative humidities in the first half of the year were associated with fewer mirids at hand‐height, but larger numbers of adult males were caught in pheromone traps. The study showed that relying solely on one method is not sufficient to provide accurate information on mirid population dynamics and a combination of the two methods is necessary. 相似文献
16.
Jose L. Horreo America G. Valiente Alba Ardura Aida Blanco Claudia Garcia‐Gonzalez Eva Garcia‐Vazquez 《Ecology and evolution》2018,8(1):521-529
Biological changes occurring as a consequence of domestication and/or captivity are not still deeply known. In Atlantic salmon (Salmo salar), endangered (Southern Europe) populations are enhanced by supportive breeding, which involves only 6 months of captive rearing following artificial spawning of wild‐collected adults. In this work, we assess whether several fitness‐correlated life‐history traits (migratory behavior, straying rate, age at maturity, and growth) are affected by early exposure to the captive environment within a generation, before reproduction thus before genetic selection. Results showed significant differences in growth and migratory behavior (including straying), associated with this very short period of captivity in natural fish populations, changing even genetic variability (decreased in hatchery‐reared adults) and the native population structure within and between rivers of the species. These changes appeared within a single generation, suggesting very short time of captivity is enough for initiating changes normally attributed to domestication. These results may have potential implications for the long‐term population stability/viability of species subjected to restoration and enhancement processes and could be also considered for the management of zoo populations. 相似文献
17.
Mohamed Wassim Hizem Philip Riordan Haithem El‐Farhati Lazhar Hamdi Saïd Nouira 《African Journal of Ecology》2019,57(4):575-585
Long‐term population studies on large mammals are rare. Here, we have examined the threatened scimitar‐horned oryx, addax and dama gazelle's populations over the last 20 years in Bou Hedma National Park. Using monthly count data of the three studied species collected since 1995, we examined their population trends. Using autocorrelation analyses, we discovered endogenous natural cyclical fluctuations in the numbers of each species, with a periodicity of approximately 3 years. For all three studied species which seem to be opportunistic breeders, births and deaths occurred throughout the year, although with notable seasonality. By means of cross‐correlation, we discovered that during the first 7 years for which data were available, addax numbers were positively correlated with those of dama and inversely correlated with numbers of oryx. This pattern reversed during the following 4‐year period. The number of oryx was negatively correlated with dama during the first 4 years and then became positively correlated during the subsequent 7‐year period. Thus, we draw attention to difference in response to environmental and anthropogenic factors. Incorporating fundamental long‐term population data into developing management approaches, especially for potentially competitive species, is vital for their future long‐term survival and the success of conservation actions. 相似文献
18.
Katri Korpela Maria Delgado Heikki Henttonen Erkki Korpimäki Esa Koskela Otso Ovaskainen Hannu Pietiäinen Janne Sundell Nigel G Yoccoz Otso Huitu 《Global Change Biology》2013,19(3):697-710
Small rodents are key species in many ecosystems. In boreal and subarctic environments, their importance is heightened by pronounced multiannual population cycles. Alarmingly, the previously regular rodent cycles appear to be collapsing simultaneously in many areas. Climate change, particularly decreasing snow quality or quantity in winter, is hypothesized as a causal factor, but the evidence is contradictory. Reliable analysis of population dynamics and the influence of climate thereon necessitate spatially and temporally extensive data. We combined data on vole abundances and climate, collected at 33 locations throughout Finland from 1970 to 2011, to test the hypothesis that warming winters are causing a disappearance of multiannual vole cycles. We predicted that vole population dynamics exhibit geographic and temporal variation associated with variation in climate; reduced cyclicity should be observed when and where winter weather has become milder. We found that the temporal patterns in cyclicity varied between climatically different regions: a transient reduction in cycle amplitude in the coldest region, low‐amplitude cycles or irregular dynamics in the climatically intermediate regions, and strengthening cyclicity in the warmest region. Our results did not support the hypothesis that mild winters are uniformly leading to irregular dynamics in boreal vole populations. Long and cold winters were neither a prerequisite for high‐amplitude multiannual cycles, nor were mild winters with reduced snow cover associated with reduced winter growth rates. Population dynamics correlated more strongly with growing season than with winter conditions. Cyclicity was weakened by increasing growing season temperatures in the cold, but strengthened in the warm regions. High‐amplitude multiannual vole cycles emerge in two climatic regimes: a winter‐driven cycle in cold, and a summer‐driven cycle in warm climates. Finally, we show that geographic climatic gradients alone may not reliably predict biological responses to climate change. 相似文献
19.
Herbaceous competition and herbivory have been identified as critical barriers to restoration of native tree species in degraded landscapes around the world; however, the combined effects of competition and herbivory are poorly understood. We experimentally manipulated levels of herbivory and herbaceous competition and analyzed the response of tree seedling performance over three growing seasons as a function of species and habitat in north‐central West Virginia. Four native tree species were planted in old field and forest experimental plots: Castanea dentata (American chestnut), Quercus rubra (red oak), Acer saccharum (sugar maple), and Picea rubens (red spruce). Red spruce demonstrated the highest growth increment and greatest survival (64%) and most consistent results among treatments and habitats. Red spruce survival was not reduced in the presence of Odocoileus virginianus (white‐tailed deer) browse and herbaceous competition; however, growth was improved by suppression of herbaceous competition. We suspect that this deciduous forest landscape would regenerate to a red spruce dominated forest if seed source was available. In contrast, the other three species tested had very low survival when exposed to deer and were more responsive to competing vegetation and habitat type. American chestnut had low survival and growth across all treatments, suggesting basic climate limitations. Vigorous natural regeneration of Prunus serotina (black cherry) occurred in forest plots where both competing herbs and deer were excluded. Our results demonstrated the importance of testing multiple potential recruitment barriers and species at once and the need for species and habitat‐specific restoration treatments. 相似文献
20.
Jun Chen Lili Li Pascal Milesi Gunnar Jansson Mats Berlin Bo Karlsson Jelena Aleksic Giovanni G. Vendramin Martin Lascoux 《Evolutionary Applications》2019,12(8):1539-1551
Primeval forests are today exceedingly rare in Europe, and transfer of forest reproductive material for afforestation and improvement has been very common, especially over the last two centuries. This can be a serious impediment when inferring past population movements in response to past climate changes such as the last glacial maximum (LGM), some 18,000 years ago. In the present study, we genotyped 1,672 individuals from three Picea species (P. abies, P. obovata, and P. omorika) at 400K SNPs using exome capture to infer the past demographic history of Norway spruce (P. abies) and estimate the amount of recent introduction used to establish the Norway spruce breeding program in southern Sweden. Most of these trees belong to P. abies and originate from the base populations of the Swedish breeding program. Others originate from populations across the natural ranges of the three species. Of the 1,499 individuals stemming from the breeding program, a large proportion corresponds to recent introductions from mainland Europe. The split of P. omorika occurred 23 million years ago (mya), while the divergence between P. obovata and P. abies began 17.6 mya. Demographic inferences retrieved the same main clusters within P. abies than previous studies, that is, a vast northern domain ranging from Norway to central Russia, where the species is progressively replaced by Siberian spruce (P. obovata) and two smaller domains, an Alpine domain and a Carpathian one, but also revealed further subdivision and gene flow among clusters. The three main domains divergence was ancient (15 mya), and all three went through a bottleneck corresponding to the LGM. Approximately 17% of P. abies Nordic domain migrated from P. obovata ~103K years ago, when both species had much larger effective population sizes. Our analysis of genomewide polymorphism data thus revealed the complex demographic history of Picea genus in Western Europe and highlighted the importance of material transfer in Swedish breeding program. 相似文献