首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Post-translational modifications of core histone tails play crucial roles in chromatin structure and function. Although phosphorylation of Ser10 and Ser28 (H3S10ph and H3S28ph) of histone H3 is ubiquitous among eukaryotes, the phosphorylation mechanism during the cell cycle remains unclear. In the present study, H3S10ph and H3S28ph in tobacco BY-2 cells were observed in the pericentromeric regions during mitosis. Moreover, the Aurora kinase inhibitor Hesperadin inhibited the kinase activity of Arabidopsis thaliana Aurora kinase 3 (AtAUR3) in phosphorylating both Ser10 and Ser28 of histone H3 in vitro. Consistently, Hesperadin inhibited both H3S10ph and H3S28ph during mitosis in BY-2 cells. These results indicate that plant Aurora kinases phosphorylate not only Ser10, but also Ser28 of histone H3 in vivo. Hesperadin treatment increased the ratio of metaphase cells, while the ratio of anaphase/telophase cells decreased, although the mitotic index was not affected in Hesperadin-treated cells. These results suggest that Hesperadin induces delayed transition from metaphase to anaphase, and early exit from mitosis after chromosome segregation. In addition, micronuclei were observed frequently and lagging chromosomes, caused by the delay and failure of sister chromatid separation, were observed at anaphase and telophase in Hesperadin-treated BY-2 cells. The data obtained here suggest that plant Aurora kinases and H3S10ph/H3S28ph may have a role in chromosome segregation and metaphase/anaphase transition.  相似文献   

2.
3.
Combinatorial modifications of the core histones have the potential to fine-tune the epigenetic regulation of chromatin states. The Aurora B kinase is responsible for generating the double histone H3 modification tri-methylated K9/phosphorylated S10 (H3K9me3/S10ph), which has been implicated in chromosome condensation during mitosis. In this study, we have identified a novel role for Aurora B in epigenetic marking of silent chromatin during cell differentiation. We find that phosphorylation of H3 S10 by Aurora B generates high levels of the double H3K9me3/S10ph modification in differentiated postmitotic cells and also results in delocalisation of HP1beta away from heterochromatin in terminally differentiated plasma cells. Microarray analysis of the H3K9me3/S10ph modification shows a striking increase in the modification across repressed genes during differentiation of mesenchymal stem cells. Our results provide evidence that the Aurora B kinase has a role in marking silent chromatin independently of the cell cycle and suggest that targeting of Aurora B-mediated phosphorylation of H3 S10 to repressed genes could be a mechanism for epigenetic silencing of gene expression.  相似文献   

4.
Histone modifications coordinate the chromatin localization of key regulatory factors in mitosis. For example, mitotic phosphorylation of Histone H3 threonine‐3 (H3T3ph) by Haspin creates a binding site for the chromosomal passenger complex (CPC). However, how these histone modifications are spatiotemporally controlled during the cell cycle is unclear. Here we show that Plk1 binds to Haspin in a Cdk1‐phosphorylation‐dependent manner. Reducing Plk1 activity decreases the phosphorylation of Haspin and inhibits H3T3ph, particularly in prophase, suggesting that Plk1 is required for initial activation of Haspin in early mitosis. These studies demonstrate that Plk1 can positively regulate CPC recruitment in mitosis.  相似文献   

5.
The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells.  相似文献   

6.
The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.  相似文献   

7.
The important role of histone posttranslational modifications, particularly methylation and acetylation, in Plasmodium falciparum gene regulation has been established. However, the role of histone phosphorylation remains understudied. Here, we investigate histone phosphorylation utilizing liquid chromatography and tandem mass spectrometry to analyze histones extracted from asexual blood stages using two improved protocols to enhance preservation of PTMs. Enrichment for phosphopeptides lead to the detection of 14 histone phospho-modifications in P. falciparum. The majority of phosphorylation sites were observed at the N-terminal regions of various histones and were frequently observed adjacent to acetylated lysines. We also report the identification of one novel member of the P. falciparum histone phosphosite binding protein repertoire, Pf14-3-3I. Recombinant Pf14-3-3I protein bound to purified parasite histones. In silico structural analysis of Pf14-3-3 proteins revealed that residues responsible for binding to histone H3 S10ph and/or S28ph are conserved at the primary and the tertiary structure levels. Using a battery of H3 specific phosphopeptides, we demonstrate that Pf14-3-3I preferentially binds to H3S28ph over H3S10ph, independent of modification of neighbouring residues like H3S10phK14ac and H3S28phS32ph. Our data provide key insight into histone phosphorylation sites. The identification of a second member of the histone modification reading machinery suggests a widespread use of histone phosphorylation in the control of various nuclear processes in malaria parasites.  相似文献   

8.
The transient mitotic histone H3 phosphorylation by various protein kinases regulates chromosome condensation and segregation, but the counteracting phosphatases have been poorly characterized [1-8]. We show here that PP1γ is the major histone H3 phosphatase acting on the mitotically phosphorylated (ph) residues H3T3ph, H3S10ph, H3T11ph, and H3S28ph. In addition, we identify Repo-Man, a chromosome-bound interactor of PP1γ [9], as a selective regulator of H3T3ph and H3T11ph dephosphorylation. Repo-Man promotes H3T11ph dephosphorylation by an indirect mechanism but directly and specifically targets H3T3ph for dephosphorylation by associated PP1γ. The PP1γ/Repo-Man complex opposes the protein kinase Haspin-mediated spreading of H3T3ph to the chromosome arms until metaphase and catalyzes the net dephosphorylation of H3T3ph at the end of mitosis. Consistent with these findings, Repo-Man modulates in a PP1-dependent manner the H3T3ph-regulated chromosomal targeting of Aurora kinase B and its substrate MCAK. Our study defines a novel mechanism by which PP1 counteracts Aurora B.  相似文献   

9.
Song L  Li D  Liu R  Zhou H  Chen J  Huang X 《Cell biology international》2007,31(10):1184-1190
Ser-10 phosphorylation of histone H3 is revealed to be relative to chromosome condensation at prophase during mitosis. In this report, we demonstrate using immunofluorescence microscopy that the subcellular distribution of the Ser-10 phosphorylated histone H3 was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis. Co-immunoprecipitation indicates that the Ser-10 phosphorylated histone H3 is associated with the aurora B, and both of the proteins were compacted into a complex with special ternary structure located in the centre of the midbody. When the level of the Ser-10 phosphorylated histone H3 was reduced by RNA interference, the cells formed an aberrant midbody and could not complete cytokinesis successfully. This evidence suggests that Ser-10 phosphorylated histone H3 is a chromosomal passenger protein and plays a crucial role in cytokinesis.  相似文献   

10.
Haspin phosphorylates histone H3 at Thr3 (H3T3ph) during mitosis [1, 2], providing a chromatin binding site for the chromosomal passenger complex (CPC) at centromeres to regulate chromosome segregation [3-5]. H3T3ph becomes increasingly focused at inner centromeres during prometaphase [1, 2], but little is known about how its level or location and the consequent chromosomal localization of the CPC are regulated. In addition, CPC binding to shugoshin proteins contributes to centromeric Aurora B localization [5, 6]. Recruitment of the shugoshins to centromeres requires the phosphorylation of histone H2A at Thr120 (H2AT120ph) by the kinetochore kinase Bub1 [7], but the molecular basis for the collaboration of this pathway with H3T3ph has been unclear. Here, we show that Aurora B phosphorylates Haspin to promote generation of H3T3ph and that Aurora B kinase activity is required for normal chromosomal localization of the CPC, indicating an intimate linkage between Aurora B and Haspin functions in mitosis. We propose that Aurora B activity triggers a CPC-Haspin-H3T3ph feedback loop that promotes generation of H3T3ph on chromatin. We also provide evidence that the Bub1-shugoshin-CPC pathway supplies a signal that boosts the CPC-Haspin-H3T3ph feedback loop specifically at centromeres to produce the well-known accumulation of the CPC in these regions.  相似文献   

11.
A novel mitosis-specific phosphorylation site in histone H3 at threonine 11 has been described for mammalian cells. This modification is restricted to the centromeric region while phosphorylation at the classical H3 sites, Ser10 and Ser28 occurs along the entire chromosomal arms. Using phosphorylation state-specific antibodies we found that phosphorylation at threonine 11 occurs also in plant cells, during mitosis as well as meiosis. However, in contrast to animal cells, ph(Thr11)H3 was distributed along the entire length of condensed chromosomes, whereas H3 phosphorylated at Ser10 and Ser28 appeared to be restricted to centromeric/pericentromeric chromatin. Phosphorylation at Thr11 started in prophase and ended in telophase, it correlated with the condensation of mitotic and meiotic chromosomes and was independent of the distribution of late replicating heterochromatin and Giemsa-banding positive regions. Interestingly, treatment of cells with the phosphatase inhibitor cantharidin revealed a high level of Thr11 phosphorylation in interphase cells, in this case particularly in pericentromeric regions. These data show that histone modifications are highly dynamic. Moreover, animal and plant organisms may have evolved individual histone codes.  相似文献   

12.
Phosphorylation of nuclear proteins   总被引:1,自引:0,他引:1  
Many nuclear proteins are phosphorylated: they range from enzymes to several structural proteins such as histones, non-histone chromosomal proteins and the nuclear lamins. The pattern of phosphorylation varies through the cell cycle. Although histone H1 is phosphorylated during interphase its phosphorylation increases sharply during mitosis. Histone H3, chromosomal protein HMG 14 and lamins A, B and C all show reversible phosphorylation during mitosis. Several nuclear kinases have been characterized, including one that increases during mitosis and phosphorylates H1 in vitro. Factors have been demonstrated in maturing amphibian oocytes and mitotic mammalian cells that induce chromosome condensation and breakdown of the nuclear membrane. The possibility that they are autocatalytic protein kinases is considered. The location of histone phosphorylation sites within the nucleosome is consistent with a role for phosphorylation in modulating chromatin folding.  相似文献   

13.
Post-translational modifications of histone proteins, the basic building blocks around which eukaryotic DNA is organized, are crucially involved in the regulation of genome activity as they control chromatin structure and dynamics. The recruitment of specific binding proteins that recognize and interact with particular histone modifications is thought to constitute a fundamental mechanism by which histone marks mediate biological function. For instance, tri-methylation of histone H3 lysine 9 (H3K9me3) is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Until now, little was known about the regulation of effector-histone mark interactions, and in particular, of the binding of HP1 to H3K9me3. Recently, we and others presented evidence that a "binary methylation-phosphorylation switch" mechanism controls the dynamic release of HP1 from H3K9me3 during the cell cycle: phosphorylation of histone H3 serine 10 (H3S10ph) occurs at the onset of mitosis, interferes with HP1-H3K9me3 interaction, and therefore, ejects HP1 from its binding site. Here, we discuss the biological function of HP1 release from chromatin during mitosis, consider implications why the cell controls HP1 binding by such a methylation-phosphorylation switching mechanism, and reflect on other cellular pathways where binary switching of HP1 might occur.  相似文献   

14.
15.
Post-translational modifications of core histone proteins play a key role in chromatin structure and function. Here, we study histone post-translational modifications during reentry of protoplasts derived from tobacco mesophyll cells into the cell cycle and evaluate their significance for progression through mitosis. Methylation of histone H3 at lysine residues 4 and 9 persisted in chromosomes during all phases of the cell cycle. However, acetylation of H4 and H3 was dramatically reduced during mitosis in a stage-specific manner; while deacetylation of histone H4 commenced at prophase and persisted up to telophase, histone H3 remained acetylated up to metaphase but was deacetylated at anaphase and telophase. Phosphorylation of histone H3 at serine 10 was initiated at prophase, concomitantly with deacetylation of histone H4, and persisted up to telophase. Preventing histone deacetylation by the histone deacetylase inhibitor trichostatin A (TSA) led to accumulation of protoplasts at metaphase-anaphase, and reduced S10 phosphorylation during anaphase and telophase; in cultured tobacco cells, TSA significantly reduced the frequency of mitotic figures. Our results indicate that deacetylation of histone H4 and H3 in tobacco protoplasts occurs during mitosis in a phase-specific manner, and is important for progression through mitosis.  相似文献   

16.
BACKGROUND: Histone H1 and H3 phosphorylation associated with chromatin condensation during mitosis has been studied extensively. Less is known on histone modifications that occur during premature chromosome condensation (PCC). The aim of the present study was to reveal the status of histone H3 and H2AX phosphorylation on Ser-10 and Ser-139, respectively, as well as ATM activation through phosphorylation on Ser-1981, during PCC, and relate these events to cell-cycle phase and to initiation of apoptosis. MATERIALS AND METHODS: To induce PCC, A549 and HL-60 cells were exposed to the phosphatase inhibitor calyculin A (Cal A). Phosphorylation of histone H3 and H2AX as well as ATM activation were detected immunocytochemically concurrent with analysis of cellular DNA content and activation of caspase-3, a marker of apoptosis. The intensity of cellular fluorescence was measured by flow- or laser scanning cytometry. RESULTS: Induction of PCC led to rapid histone H3 phosphorylation, followed by activation of ATM and then H2AX phosphorylation in both, HL-60 and A549 cells. All these events occurred sequentially, prior to caspase-3 activation, and affected cells in all phases of the cell cycle. ATM activation and H2AX phosphorylation was seen during mitosis of A549 but not HL-60 cells. CONCLUSIONS: Because the Cal A-induced phosphorylation of histone H3 and H2AX, and of ATM, precede caspase-3 activation these modifications are pertinent to PCC and not to apoptosis-associated chromatin condensation. The sequence of histone H3 and H2AX phosphorylation and ATM activation during PCC is compatible with a role of ATM in mediating phosphorylation of H2AX but not H3. Mitosis in some cell types may proceed without ATM activation and H2AX phosphorylation.  相似文献   

17.
VRK1-mediated phosphorylation of histone H3 should be restricted in mitosis for consistent cell cycling, and defects in this process trigger cellular catastrophe. However, an interphasic regulator against VRK1 has not been actually investigated so far. Here, we show that the histone variant macrodomain-containing histone H2A1.2 functions as a suppressor against VRK1 during interphase. The level of macroH2A1.2 was markedly reduced in the mitotic phase, and the macroH2A1.2-mediated inhibition of histone H3 phosphorylation occurred mainly during interphase. We also found direct interaction and binding features between VRK1 and macroH2A1.2 by NMR spectroscopy. Hence, our findings might provide valuable insight into the underlying molecular mechanism regarding an epigenetic regulation of histone H3 during the cell cycle.  相似文献   

18.
组蛋白H3在氨基末端Ser10、Ser28、Thr11和Thr3等氨基酸残基的磷酸化修饰是一类在时间上和空间上与细胞有丝分裂相关的翻译后修饰事件。为了研究Thr11位点磷酸化作用的功能,利用SDS-PAGE、Western Blot、间接免疫荧光标记技术和激光共聚焦显微技术检测分析了人乳腺癌细胞(MCF-7)中Thr11磷酸化组蛋白H3在有丝分裂过程中的动态分布,以研究其在有丝分裂过程中的功能。结果显示:在MCF-7细胞中,组蛋白H3 Thr11的磷酸化发生在早前期细胞染色体的着丝粒处,成点状分布,继而在早中期达到最高水平,并以点状集中在赤道板上,在有丝分裂后期开始脱磷酸化,并于末期完成脱磷酸化。事实表明,H3 Thr11的磷酸化与细胞有丝分裂过程存在着时间和空间上的相关性。Thr11磷酸化H3只存在于着丝粒表明它可能参与有丝分裂期间功能性动原体的组成。这与Ser10磷酸化H3的分布及可能的功能截然相反。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号