首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s.) and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases, but may also present new therapeutic approaches for acute inflammatory diseases that do not impair bacterial control.  相似文献   

2.
Medicinal signaling cells (MSCs) are multipotent cells derived from mammalian bone marrow and periosteum that can be extended in culture. They can keep their ability in vitro to form a variety of mesodermal phenotypes and tissues. Over recent years, there has been great attention over MSCs since they can impact the organ transplantation as well as autoimmune and bacterial diseases. MSCs can secrete different bioactive factors such as growth factors, antimicrobial peptides/proteins and cytokines that can suppress the immune system and prevent infection via direct and indirect mechanisms. Moreover, MSCs are able to increase bacterial clearance in sepsis models by producing antimicrobial peptides such as defensins, cathelicidins, lipocalin and hepcidin. It is the aim of the present review to focus on the antibacterial effector functions of MSCs and their mechanisms of action against the pathogenic microbes.  相似文献   

3.
The mechanisms governing the impairment of bacterial clearance and immune function in sepsis are not known. Adenosine levels are elevated during tissue hypoxia and damage associated with sepsis. Adenosine has strong immunosuppressive effects, many of which are mediated by A(2A) receptors (A(2A)R) expressed on immune cells. We examined whether A(2A)R are involved in the regulation of immune function in cecal ligation and puncture-induced murine polymicrobial sepsis by genetically or pharmacologically inactivating A(2A)R. A(2A)R knockout (KO) mice were protected from the lethal effect of sepsis and had improved bacterial clearance compared with wild-type animals. cDNA microarray analysis and flow cytometry revealed increased MHC II expression in A(2A)-inactivated mice, suggesting improved Ag presentation as a mechanism of protection. Apoptosis was attenuated in the spleen of A(2A) KO mice indicating preserved lymphocyte function. Levels of the immunosuppressive cytokines IL-10 and IL-6 were markedly lower following A(2A)R blockade. Similar to observations with A(2A)R KO mice, an A(2A)R antagonist increased survival even when administered in a delayed fashion. These studies demonstrate that A(2A)R blockade may be useful in the treatment of infection and sepsis.  相似文献   

4.
Using a murine model of sepsis, we found that the balance of tissue pro- to anti-inflammatory cytokines directly correlated with severity of infection and mortality. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Liver tissue was analyzed for levels of IL-1beta, IL-1 receptor antagonist (IL-1ra), tumor necrosis factor (TNF)-alpha, and soluble TNF receptor 1 by ELISA. Bacterial DNA was measured using quantitative real-time PCR. After CLP, early predominance of proinflammatory cytokines (6 h) transitioned to anti-inflammatory predominance at 24 h. The elevated anti-inflammatory cytokines were mirrored by increased tissue bacterial levels. The degree of anti-inflammatory response compared with proinflammatory response correlated with the bacterial concentration. To modulate the timing of the anti-inflammatory response, mice were treated with IL-1ra before CLP. This resulted in decreased proinflammatory cytokines, earlier bacterial load, and increased mortality. These studies show that the initial tissue proinflammatory response to sepsis is followed by an anti-inflammatory response. The anti-inflammatory phase is associated with increased bacterial load and mortality. These data suggest that it is the timing and magnitude of the anti-inflammatory response that predicts severity of infection in a murine model of sepsis.  相似文献   

5.
6.
HDL has been considered to be a protective factor in sepsis; however, most contributing studies were conducted using the endotoxic animal model, and evidence from clinically relevant septic animal models remains limited and controversial. Furthermore, little is known about the roles of HDL in sepsis other than LPS neutralization. In this study, we employed cecal ligation and puncture (CLP), a clinically relevant septic animal model, and utilized apoA-I knock-out (KO) and transgenic mice to elucidate the roles of HDL in sepsis. ApoA-I-KO mice were more susceptible to CLP-induced septic death as shown by the 47.1% survival of apoA-I-KO mice versus the 76.7% survival of C57BL/6J (B6) mice (p = 0.038). ApoA-I-KO mice had exacerbated inflammatory cytokine production during sepsis compared with B6 mice. Further study indicated that serum from apoA-I-KO mice displayed less capacity for LPS neutralization compared with serum from B6 mice. In addition, apoA-I-KO mice had less LPS clearance, reduced corticosterone generation, and impaired leukocyte recruitment in sepsis. In contrast to apoA-I-KO mice, apoA-I transgenic mice were moderately resistant to CLP-induced septic death compared with B6 mice. In conclusion, our findings reveal multiple protective roles of HDL in CLP-induced sepsis. In addition to its well established role in neutralization of LPS, HDL exerts its protection against sepsis through promoting LPS clearance and modulating corticosterone production and leukocyte recruitment. Our study supports efforts to raise HDL levels as a therapeutic approach for sepsis.  相似文献   

7.
Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival.  相似文献   

8.
Recently, we demonstrated that intratracheal transplantation of human umbilical cord blood‐ derived mesenchymal stem cells (MSCs) attenuates Escherichia (E) coli‐ induced acute lung injury primarily by down‐ modulating inflammation and enhancing bacterial clearance iQn mice. This study was performed to elucidate the mechanism underlying the antibacterial effects of MSCs. The growth of E. coli in vitro was significantly inhibited only by MSCs or their conditioned medium with bacterial preconditioning, but not by fibroblasts or their conditioned medium. Microarray analysis identified significant up‐ regulation of toll‐ like receptors (TLR)‐ 2 and TLR‐ 4, and β‐ defensin 2 (BD2) in MSCs compared with fibroblasts after E. coli exposure. The increased BD2 level and the in vitro antibacterial effects of MSCs were abolished by specific antagonist or by siRNA‐ mediated knockdown of TLR‐ 4, but not TLR‐ 2, and restored by BD2 supplementation. The in vivo down‐ modulation of the inflammatory response and enhanced bacterial clearance, increased BD2 secretion and the resultant protection against E. coli‐ induced pneumonia observed only with MSCs, but not fibroblasts, transplantation in mice, were abolished by knockdown of TLR‐ 4 with siRNA transfection. Our data indicate that BD2 secreted by the MSCs via the TLR‐ 4 signalling pathway is one of the critical paracrine factors mediating their microbicidal effects against E. coli, both in vitro and in vivo. Furthermore, TLR‐ 4 from the transplanted MSCs plays a seminal role in attenuating in vivo E. coli‐ induced pneumonia and the ensuing acute lung injury through both its anti‐ inflammatory and antibacterial effects.  相似文献   

9.

Background

Pneumonia is the fourth leading cause of death worldwide, and Streptococcus pneumoniae is the most commonly associated pathogen. Increasing evidence suggests that mesenchymal stromal cells (MSCs) have anti-inflammatory roles during innate immune responses such as sepsis. However, little is known about the effect of MSCs on pneumococcal pneumonia.

Methods

Bone marrow–derived macrophages (BMDMs) were stimulated with various ligands in the presence or absence of MSC-conditioned medium. For in vivo studies, mice intranasally-inoculated with S. pneumoniae were intravenously treated with MSCs or vehicle, and various parameters were assessed.

Results

After stimulation with toll-like receptor (TLR) 2, TLR9 or TLR4 ligands, or live S. pneumoniae, TNF-α and interleukin (IL)–6 levels were significantly decreased, whereas IL-10 was significantly increased in BMDMs cultured in MSC-conditioned medium. In mice, MSC treatment decreased the number of neutrophils in bronchoalveolar lavage fluid (BALF) after pneumococcal infection, and this was associated with a decrease in myeloperoxidase activity in the lungs. Levels of proinflammatory cytokines, including TNF-α, IL-6, GM-CSF and IFN-γ, were significantly lower in MSC-treated mice, and the bacterial load in the lung after pneumococcal infection was significantly reduced. In addition, histopathologic analysis confirmed a decrease in the number of cells recruited to the lungs; however, lung edema, protein leakage into the BALF and levels of the antibacterial protein lipocalin 2 in the BALF were comparable between the groups.

Conclusions

These results indicate that MSCs could represent a potential therapeutic application for the treatment of pneumonia caused by S. pneumoniae.  相似文献   

10.

Background

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response.

Methods

Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.

Results

MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.

Conclusions

Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.  相似文献   

11.
The role of A3 adenosine receptors (ARs) in sepsis and inflammation is controversial. In this study, we determined the effects of A3AR modulation on mortality and hepatic and renal dysfunction in a murine model of sepsis. To induce sepsis, congenic A3AR knockout mice (A3AR KO) and wild-type control (A3AR WT) mice were subjected to cecal ligation and double puncture (CLP). A3AR KO mice had significantly worse 7-day survival compared with A3AR WT mice. A3AR KO mice also demonstrated significantly higher elevations in plasma creatinine, alanine aminotransferase, aspartate aminotransferase, keratinocyte-derived chemokine, and TNF-alpha 24 h after induction of sepsis compared with A3AR WT mice. Renal cortices from septic A3AR KO mice exhibited increased mRNA encoding proinflammatory cytokines and enhanced nuclear translocation of NF-kB compared with samples from A3AR WT mice. A3AR WT mice treated with N6-(3-iodobenzyl)ADO-5'N-methyluronamide (IB-MECA; a selective A3AR agonist) or 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191; a selective A3AR antagonist) had improved or worsened 7-day survival after induction of sepsis, respectively. Moreover, A3AR WT mice treated with IB-MECA or MRS-1191 showed acutely improved or worsened, respectively, renal and hepatic function following CLP. IB-MECA significantly reduced mortality in mice lacking the A1AR or A2aAR but not the A3AR, demonstrating specificity of IB-MECA in activating A3ARs and mediating protection against sepsis-induced mortality. We conclude that endogenous or exogenous A3AR activation confers significant protection from murine septic peritonitis primarily by attenuating the hyperacute inflammatory response in sepsis.  相似文献   

12.
ObjectivesAcute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in‐depth study.Materials and methodsWe evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)‐induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry.ResultsMesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small‐intestinal lymphocytes and Peyer''s patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect.ConclusionsThe present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS‐induced ALI.  相似文献   

13.

Background

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response.

Methods

Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.

Results

MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.

Conclusions

Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.  相似文献   

14.
TLRs are highly conserved pathogen recognition receptors. As a result, TLR4-deficient C3H/HeJ mice are highly susceptible to Gram-negative sepsis. We have previously demonstrated that tolerance induced by bacterial lipoprotein (BLP) protects wild-type mice against polymicrobial sepsis-induced lethality. In this study, we assessed whether pretreatment of C3H/HeJ mice with BLP could induce resistance to a subsequent Gram-negative Salmonella typhimurium infection. Pretreatment with BLP resulted in a significant survival benefit in TLR4-deficient C3H/HeJ mice (p < 0.0002 vs control C3H/HeJ) after challenge with live S. typhimurium (0.25 x 10(6) CFU/mouse). This survival benefit was associated with enhanced bacterial clearance from the circulation and in the visceral organs (p < 0.05 vs control C3H/HeJ). Furthermore, pretreatment with BLP resulted in significant increases in complement receptor type 3 (CR3) and FcgammaIII/IIR expression on polymorphonuclear neutrophils (PMNs) and macrophages (p < 0.05 vs control C3H/HeJ). There was impaired bacterial recognition and phagocytosis in TLR4-deficient mice compared with wild-type mice. However, a significant augmented uptake, ingestion, and intracellular killing of S. typhimurium by PMNs and peritoneal macrophages was evident in BLP-pretreated C3H/HeJ mice (p < 0.05 vs control C3H/HeJ). An up-regulation of inducible NO synthase and increased production of intracellular NO were observed in peritoneal macrophages from BLP-pretreated C3H/HeJ mice (p < 0.05 vs control C3H/HeJ). Depletion of PMNs did not diminish the beneficial effects of BLP with regard to both animal survival and bacterial clearance. These results indicate that BLP, a TLR2 ligand, protects highly susceptible TLR4-deficient mice from Gram-negative sepsis via enhanced bacterial clearance.  相似文献   

15.
CCR1 has previously been shown to play important roles in leukocyte trafficking, pathogen clearance, and the type 1/type 2 cytokine balance, although very little is known about its role in the host response during sepsis. In a cecal ligation and puncture model of septic peritonitis, CCR1-deficient (CCR1(-/-)) mice were significantly protected from the lethal effects of sepsis when compared with wild-type (WT) controls. The peritoneal and systemic cytokine profile in CCR1(-/-) mice was characterized by a robust, but short-lived and regulated antibacterial response. CCR1 expression was not required for leukocyte recruitment, suggesting critical differences extant in the activation of WT and CCR1(-/-) resident or recruited peritoneal cells during sepsis. Peritoneal macrophages isolated from naive CCR1(-/-) mice clearly demonstrated enhanced cytokine/chemokine generation and antibacterial responses compared with similarly treated WT macrophages. CCR1 and CCL5 interactions markedly altered the inflammatory response in vivo and in vitro. Administration of CCL5 increased sepsis-induced lethality in WT mice, whereas neutralization of CCL5 improved survival. CCL5 acted in a CCR1-dependent manner to augment production of IFN-gamma and MIP-2 to damaging levels. These data illustrate that the interaction between CCR1 and CCL5 modulates the innate immune response during sepsis, and both represent potential targets for therapeutic intervention.  相似文献   

16.
Sepsis is a systemic inflammatory response that results from the inability of the immune system to limit bacterial spread during an ongoing infection. Recently, we have documented an impaired neutrophil migration toward the infectious focus in severe sepsis. This impairment seems to be mediated by circulating cytokines, chemokines, and NO. Platelet-activating factor (PAF) plays an important role in the orchestration of different inflammatory reactions, including the release of cytokines, chemokines, and free radicals. Using a PAFR antagonist, PCA-4248, and PAFR-deficient mice, we investigated whether signaling via PAFR was relevant for the failure of neutrophils to migrate to the site of infection after lethal sepsis caused by cecum ligation and puncture in mice. In PAFR-deficient mice or mice pretreated with PCA-4248 (5 mg/kg) and subjected to lethal sepsis, neutrophil migration failure was prevented, and bacterial clearance was more efficient. There was also reduced systemic inflammation (low serum cytokine levels), lower nitrate levels in plasma, and higher survival rate. Altogether, the results firmly establish a role for PAFR in mediating the early impairment of neutrophil migration toward the infectious focus. Blockade of PAFR may prevent the establishment of severe sepsis.  相似文献   

17.
Regulatory CD4(+)CD25(+) T cells (Tregs) suppress autoimmune and inflammatory diseases through mechanisms that are only partly understood. Previous studies suggest that Tregs can suppress bacterially triggered intestinal inflammation and respond to LPS through TLRs with enhanced suppressive activity. In this study, we have used murine cecal ligation and puncture as a model of polymicrobial sepsis to explore the effects of adoptive transfer of Tregs on septic outcome. Adoptive transfer of in vitro-stimulated Tregs in both prevention and therapeutic modes significantly improved survival of cecal ligation and puncture mice. Furthermore, the effect was dependent on both the number of Tregs adoptively transferred and the presence of host T cells. Animals that received stimulated Tregs had significantly increased peritoneal mast cells and peritoneal TNF-alpha production. More importantly, adoptive transfer of in vitro-stimulated Tregs significantly improved bacterial clearance, which resulted in improved survival. Our results suggest a novel role for Tregs in sepsis.  相似文献   

18.
The role of mesenchymal stem cells (MSCs) in cellular therapy is well recognized in this work. MSCs have advantages of high proliferation, clone formation, multi-lineage differentiation and immunosuppression. Furthermore, adipose-resident MSCs (ADSCs) are extensively employed due to its advantages of abundant source, low cost and simple operation. Many researchers have emphasized the role of adipose-resident MSCs in the development of therapies for liver injury, but few attentions were paid on the use of induced functional hepatocytes. Therefore, in this work the role of adipose-resident MSCs induced functional hepatocytes was mainly investigated. The function of induced hepatocytes by ELISA and the induction rate was confirmed by flow cytometry and evaluated by experimental observations. The induced hepatocytes were firstly transplanted into CCl4-caused liver damage ICR mice by tail vein. After transplantation, both liver fibrosis and function could be improved by hepatocytes, which were examined through histology, immunofluorescence staining, serum profile and biochemical parameters levels. The production of cytokines was then compared with normal mice and injury mice to explore the therapeutic mechanisms of hepatocytes. Finally, the secretions of TGF-β1, IL-6 and IL-10 in hepatocytes transplanted mice were determined and found to be higher than that of the normal and injury mice. The hepatocytes derived from ADSCs were proven to have a great significance in the therapeutic efficacy and clinical settings of liver disease animal models.  相似文献   

19.
Neutrophils are critical for the rapid eradication of bacterial pathogens, but they also contribute to the development of multiple organ failure in sepsis. We hypothesized that increasing early recruitment of neutrophils to the focus of infection will increase bacterial clearance and improve survival. Sepsis was induced in mice, using cecal ligation and puncture (CLP); blood samples were collected at 6 and 24 h; and survival was followed for 28 d. In separate experiments, peritoneal bacteria and inflammatory cells were measured. Septic mice predicted to die based on IL-6 levels (Die-P) had higher concentrations of CXCL1 and CXCL2 in the peritoneum and plasma compared with those predicted to live (Live-P). At 6 h, Live-P and Die-P had equivalent numbers of peritoneal neutrophils and bacteria. In Die-P mice the number of peritoneal bacteria increased between 6 and 24 h post-CLP, whereas in Live-P it decreased. The i.p. injection of CXCL1 and CXCL2 in naive mice resulted in local neutrophil recruitment. When given immediately after CLP, CXC chemokines increased peritoneal neutrophil recruitment at 6 h after CLP. This early increase in neutrophils induced by exogenous chemokines resulted in significantly fewer peritoneal bacteria by 24 h [CFU (log) = 6.04 versus 4.99 for vehicle versus chemokine treatment; p < 0.05]. Chemokine treatment significantly improved survival at both 5 d (40 versus 72%) and 28 d (27 versus 52%; p < 0.02 vehicle versus chemokines). These data demonstrate that early, local treatment with CXC chemokines enhances neutrophil recruitment and clearance of bacteria as well as improves survival in the CLP model of sepsis.  相似文献   

20.
Interleukin (IL)-10 is an anti-inflammatory cytokine that modulates sepsis by decreasing pro-inflammatory cytokine production and chemokine expression. In this study, IL-10-deficient and wild-type (WT) mice were infected with Corynebacterium kutscheri to determine if the absence of IL-10 altered the protective immunity and pathogenesis. After infection, IL-10 knockout (KO) mice had a higher survival rate than WT mice. The decrease of body weight and the increased weight of organs such as liver and spleen were greater in WT mice. Bacterial counts were significantly increased after inoculation in WT mice over those in IL-10 KO mice. WT mice had more granulomatous inflammation and coagulative necrosis in the liver and spleen, lymphocyte depletion in lymphoid follicles, and apoptosis of immune cells in the spleen. WT mice had significantly higher plasma concentrations of aspartate aminotransferase and alanine aminotransferase. Furthermore, more upregulation of tumor necrosis factor-α and IL-4 in the plasma, macrophage inflammatory protein-2, keratinocyte-derived chemokine, inducible nitric oxide synthase, and interferon-inducible protein 10 mRNA in the spleen were observed in WT mice after inoculation. These results suggest that the lack of IL-10 contributes to an increase in the systemic clearance of C. kutscheri, and that IL-10 plays a detrimental role in controlling systemic C. kutscheri infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号