首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jaoa prasina, a freshwater green alga endemic to China, was collected from a stream in Hubei province, China. Unialgal cultivation, morphological observation, and phylogenetic analyses of small subunit ribosomal DNA and RuBisCO large subunit sequences were performed. When cultured on agar medium, the alga was irregularly filamentous, similar to marine species of Acrochaete. Aplanospores were observed on solid medium. A vesicular‐like thallus without rhizoids developed in liquid medium, similar to specimen development in natural habitats. Molecular phylogenetic analyses revealed that Jaoa was closely related to the marine genera Acrochaete Pringsheim and Ulvella Crouan & Crouan. The results suggested the genus Jaoa is a member of the family Ulvellaceae (Ulvophyceae), which contains mostly marine algae. The family name Jaoaceae should be abandoned. We speculate that Jaoa may have evolved from a marine Ulvellaceae ancestor.  相似文献   

2.
3.
4.
The genus Caulerpa consists of about 75 species of tropical to subtropical siphonous green algae. To better understand the evolutionary history of the genus, a molecular phylogeny was inferred from chloroplast tufA sequences of 23 taxa. A sequence of Caulerpella ambigua was included as a potential outgroup. Results reveal that the latter taxon is, indeed, sister to all ingroup sequences. Caulerpa itself consists of a series of relatively ancient and species‐poor lineages and a relatively modern and rapidly diversifying clade, containing most of the diversity. The molecular phylogeny conflicts with the intrageneric sectional classification based on morphological characters and an evolutionary scheme based on chloroplast ultrastructure. High bootstrap values support monophyly of C. mexicana, C. sertularioides, C. taxifolia, C. webbiana, and C. prolifera, whereas most other Caulerpa species show para‐ or polyphyly.  相似文献   

5.
A UV‐absorbing mycosporine‐like amino acid (324 nm‐MAA), so far only known from the green macroalgal genus Prasiola (Trebouxiophyceae), was also identified in other morphologically diverse green algae closely related to Prasiola spp. in 18S rDNA phylogenies. Using HPLC, a second UV‐absorbing compound was found only in Myrmecia incisa Reisigal among all studied strains. This substance showed an absorption maximum at 322 nm and hence was designated as putative 322 nm‐MAA. Preliminary UV‐exposure experiments indicated that all species containing one or the other MAA showed a strong accumulation of the respective compound, thus supporting their function as putative UV sunscreen. Both UV‐absorbing substances were only identified in the studied members of the Trebouxiophyceae but were absent in members of the Ulvophyceae and Chlorophyceae. When mapped on an 18S rDNA phylogeny, the distribution of 324 nm‐MAA was found to be scattered within the Trebouxiophyceae but was consistent with a distribution that follows phylogenetic patterns rather than ecological adaptations. The 324 nm‐MAA was also detected in two phylogenetically related species from freshwater as well as from subaerial habitats, Watanabea reniformis Hanagata et al. and isolate UR7/5, which were phylogenetically independent of Prasiola and its closer allies. MAAs were absent in another Trebouxiophyceae clade comprising lichen photobionts (Coccomyxa pringsheimii Jaag) as well as freshwater picoplanktonic algae (Choricystis minor (Skuja) Fott). The data presented suggest a chemotaxonomic value of the 324 nm‐MAA in green algal taxonomy. To address the paraphyly of the genus Myrmecia Printz as presently circumscribed, we propose the new combination Lobosphaera incisa.  相似文献   

6.
The phylogenetic distribution of photosystem I-associated polypeptides was assessed by immunoblotting algal thylakoid membrane polypeptides with antisera generated against the P700-chlorophyll a protein (CC I) and a photosystem I light-harvesting chlorophyll-protein (LHC Ib). Polypeptides cross-reacting with the CC I apoprotein were found in 20 species representing four classes of unicellular algae. Polypeptides sharing antigenicity with spinach LHC Ib were observed only in algal species containing chlorophyll b. Tetraselmis spp. (Pleurastrophyceae), rich in chlorophyll b (Chl a:b 1.2), exhibited marked heterogeneity in the composition of their CC I and LHC Ib cross-reactive polypeptides. When immunoblotted with antisera against CC I, all Tetraselmis clones examined exhibited a 25-kD polypeptide in greater abundance than the 58-kD CC I apoprotein characteristic of higher plants and other green algal thylakoids. Three Tetraselmis clones (RG 6, RG 11, and RG 12) exhibited an 81-kD polypeptide with strong antigenicity toward the LHC Ib antisera, in contrast to the 17- to 24-kD cross-reactive polypeptides found in spinach, green algae, and one Tetraselmis clone (RG 5). Associated with the unique photosystem I polypeptide composition in Tetraselmis spp., Chl: P700 ratios for the group are 2–5 times greater than those observed for higher plants or other green algae. The chlorophyll b enrichment, unusual composition of photosystem I cross-reactive polypeptides, and heterogeneity of these polypeptides within isolates of Tetraselmis might make this genus useful for investigations of the functional organization of chlorophyll b in light-harvesting systems. These features also support the view of an alternative phyletic origin for the Pleurastrophyceae.  相似文献   

7.
The genus Coleochaete Bréb. is a relatively small group of freshwater microscopic green algae with about 15 recognized species. Although Coleochaete has long been considered to be a close relative of embryophytes, a comprehensive study of the genus has not been published since Pringsheim's 1860 monograph. As part of a systematic study of Coleochaete, we investigated four accessions of the genus that are morphologically similar to the endophytic species C. nitellarum Jost. Each of the four cultures was determined to be capable of endophytic growth in Nitella C. A. Agardh, a member of the closely related order Charales. Maximum likelihood and maximum parsimony analyses were performed on nucleotide data from the chloroplast genes atpB and rbcL that were sequenced from 16 members of the Coleochaetales and from other members of the Charophyceae, embryophytes, and outgroup taxa. These analyses indicate that the Coleochaetales are monophyletic and that the endophytic accessions are members of the scutata group of species. In addition, cell size and nucleotide data suggest that at least three different endophytic species may be represented. Herbivory, nutritional benefits, and substrate competition are three hypotheses that could explain the evolution and maintenance of the endophytic habit in Coleochaete. These data also imply that diversity in the genus may be markedly underestimated.  相似文献   

8.
Occurrence of α-N-acetylgalactosaminidases among 177 strains of marine bacteria of the phylum Bacteroidetes, epiphytes of marine algae growing on the littoral of the Seas of Okhotsk and Japan, was studied. About 36% of the isolates studied contained α-N-acetylgalactosaminidase. All of the bacteria of the genus Arenibacter (species A. latericius, A. certesii, and A. palladensis), irrespective of the source of isolation, synthesized this enzyme. The greatest number of α-N-acetylgalactosaminidase producers was found among the isolates from the algae Neosiphonia japonica, Acrosiphonia sonderi, and Ulva fenestrata sampled in the Cove of Trinity, Posyet Bay, the Sea of Japan. These were mainly bacteria of the genera Zobellia (50%) and Maribacter (58%). Among the epibionts studied, the bacteria Arenibacter latericius KMM 3523, an epiphyte of the brown alga Chorda filum from the Sea of Okhotsk, and Cellulophaga sp. KMM 6488, an epiphyte of the green alga Acrosiphonia sonderi from the Sea of Japan, were marked as the most promising sources of the enzyme. The results of this study showed that aerobic nonpathogenic marine Bacteroidetes, algal associants not requiring special cultivation conditions, are the promising, economical, and ecologically pure sources of unique and biotechnologically significant α-N-acetylgalactosaminidases.  相似文献   

9.
Symbiotic green algae from two species of intertidal Pacific sea anemones, Anthopleura elegantissima and Anthopleura xanthogrammica, were collected from the northeastern Pacific coast of North America across the known range of the symbiont. Freshly isolated Anthopleura symbionts were used for both morphological and molecular analyses because Anthopleura symbiont cultures were not available. Light and transmission electron microscopy supported previous morphological studies, showing the symbionts consist of spherical unicells from 5 to 10 μm in diameter, with numerous vesicles, and a single bilobed chloroplast. Pyrenoids were not seen in LM, but a thylakoid‐free area was observed in TEM, consistent with previous findings. Many algal cells extracted from fresh anemone tissue were observed in the process of division, producing two autospores within a maternal cell wall. The morphology of the green symbionts matches that of Elliptochloris Tscherm.‐Woess. Molecular phylogenetic analyses of the nuclear SSU rDNA and the plastid encoded gene for the large subunit of RUBISCO (rbcL) support the monophyly of these green algal symbionts, regardless of host species and geographic origin. Phylogenetically, sequences of the Anthopleura symbionts are nested within the genus Elliptochloris and are distinct from sequences of all other Elliptochloris spp. examined. Given the ecological and phylogenetic distinctions among the green algal symbionts in Anthopleura spp. and the named species of Elliptochloris, we designate the green algal symbionts as a new species, Elliptochloris marina (Trebouxiophyceae, Chlorophyta).  相似文献   

10.
Diversity of 50 bacterial isolates recovered from root nodules of Prosopis farcta grown in different arid soils in Tunisia, was investigated. Characterization of isolates was assessed using a polyphasic approach including phenotypic characteristics, 16S rRNA gene PCR–RFLP and sequencing, nodA gene sequencing and MLSA. It was found that most of isolates are tolerant to high temperature (40°C) and salinity (3%). Genetic characterization emphasizes that isolates were assigned to the genus Ensifer (80%), Mesorhizobium (4%) and non-nodulating endophytic bacteria (16%). Forty isolates belonging to the genus Ensifer were affiliated to Ensifer meliloti, Ensifer xinjiangense/Ensifer fredii and Ensifer numidicus species. Two isolates belonged to the genus Mesorhizobium. Eight isolates failing to renodulate their host plant were endophytic bacteria and belonged to Bacillus, Paenibacillus and Acinetobacter genera. Symbiotic properties of nodulating isolates showed a diversity in their capacity to infect their host plant and fix atmospheric nitrogen. Isolate PG29 identified as Ensifer meliloti was the most effective one. Ability of Prosopis farcta to establish symbiosis with rhizobial species confers an important advantage for this species to be used in reforestation programs. This study offered the first systematic information about the diversity of microsymbionts nodulating Prosopis farcta in the arid regions of Tunisia.  相似文献   

11.
In northern Shiraz (SW Iran), Lower Cretaceous carbonate was studied in detail. In this study, nine species of dasycladacea algae were classified. There are different species of dasycladacea algae which belong to seven different genera: Actinoporella, Cylindroporella, Dissocladela, Heteroporella, Neomeris, Salpingoporella, Trinocladus; one species of udoteaceae belongs to Bouenia; one species of acetabulariaceae belongs to Clypeina and the microproblematicum Coptocampylodon was also seen. Among the green algae, dasycladaceae and acetabulariceae are the most frequent and udoteaceans are rare in Zagros Mountains. The genus of Trinocladus is a new record for Lower Cretaceous (Upper Albian) in SW Iran.  相似文献   

12.
陕北黄土高原实施退耕还林后,生物结皮成为其典型的地表覆盖类型,含有丰富的土生藻类,对固定土壤和促进养分循环具有极其重要的作用。该研究通过平板法与水滴稀释法对陕北黄土高原生物结皮土生藻类进行分离培养,采用光学显微镜观察结皮微藻的形态特征,并对单藻种进行分子鉴定,为黄土高原生物结皮藻类的研究奠定基础。结果显示:(1)共纯化获得7种结皮藻类,经光学显微镜初步确定,其中5株为绿藻、2株为蓝藻。(2)5株绿藻SM-2-1、DB-2-1、DB-2-2、SD-1和SD-2的序列长度分别为664 bp、663 bp、662 bp、589 bp和688 bp,GC含量分别为33.43%、49.47%、50.15%、50.76%和51.01%;2株蓝藻YJ-3、YJ-2的序列长度分别为570 bp和465 bp,GC含量分别为46.31%和49.03%。(3)序列比对并构建系统树分析发现,5株结皮绿藻可分为4个分支,分别为栅藻科(Scenedesmaceae)2株(DB-2-1和SM-2-1)、衣藻目(Chlamydomonadales)、环藻科(Sphaeropleaceae)、真眼点藻科(Eustigmataceae),但5株绿藻的5.8S+ITS2序列在属内差异小、非常保守,极易确定到属;2株蓝藻YJ-3和YJ-2聚在同一大类分支的伪鱼腥藻科(Pseudanabaenaceae)中,但分别归于不同的属。研究认为:5株结皮绿藻中DB-2-1藻株是Scotiellopsis属的一种、SM-2-1归于尖带藻属(Acutodesmus)、DB-2-2可能是红球藻属(Haematococcus)的一物种、SD-1是Ankyra属的一物种、SD-2归于真眼点藻属(Eustigmatos);2株生物结皮蓝藻中YJ-3可能是伪鱼腥藻科的一新物种、YJ-2可能是细鞘丝藻属(Leptolyngbya)亲缘关系较近的一新物种。  相似文献   

13.
Many freshwater protists harbor unicellular green algae within their cells and these host‐symbiont relationships slowly are becoming better understood. Recently, we reported that several ciliate species shared a single species of symbiotic algae. Nonetheless, the algae from different host ciliates were each distinguishable by their different genotypes, and these host‐algal genotype combinations remained unchanged throughout a 15‐month period of sampling from natural populations. The same algal species had been reported as the shared symbiont of several ciliates from a remote lake. Consequently, this alga appears to play a key role in ciliate‐algae symbioses. In the present study, we successfully isolated the algae from ciliate cells and established unialgal cultures. This species is herein named Brandtia ciliaticola gen. et sp. nov. and has typical ‘Chlorella‐like’ morphology, being a spherical autosporic coccoid with a single chloroplast containing a pyrenoid. The alga belongs to the Chlorella‐clade in Chlorellaceae (Trebouxiophyceae), but it is not strongly connected to any of the other genera in this group. In addition to this phylogenetic distinctiveness, a unique compensatory base change in the SSU rRNA gene is decisive in distinguishing this genus. Sequences of SSU‐ITS (internal transcribed spacer) rDNA for each isolate were compared to those obtained previously from the same host ciliate. Consistent algal genotypes were recovered from each host, which strongly suggests that B. ciliaticola has established a persistent symbiosis in each ciliate species.  相似文献   

14.
对我国古老特有植物青檀叶片进行内生和附生真菌的研究,以了解青檀叶片内生和附生真菌的组成特点和探讨内生和附生真菌菌群之间的可能联系,为研究真菌资源多样性、植物附生和内生真菌的相互演化关系及真菌与宿主植物协同进化等提供有益参考资料。研究结果表明,从健康的青檀叶片获得可培养内生真菌839株,附生真菌1857株,共计2696株,鉴定其分属于4目,5科,43属。在目的分类水平上,内生和附生真菌均以丛梗孢目Moniliales为优势菌群,分别占90.23%和92.51%;在科的水平上,内生真菌以暗梗孢科Dematiaceae和丛梗孢科Moniliaceae为优势菌群,分别占47.56%和42.67%,附生真菌以丛梗孢科Moniliaceae和暗梗孢科Dematiaceae为优势菌群,分别占67.04%和25.47%;在属的水平上,内生真菌以黑团孢属Periconia和青霉属Penicillium为优势菌群,分别占31.47%和10.73%,附生真菌以小球霉属Glomerularia、膝葡孢属Gonatobotrys和青霉属Penicillium为优势菌群,分别占20.03%、13.95%和12.22%。青檀叶片内生真菌和附生真菌均存在的菌群数量达到23个属,占53.49%。内生真菌特有的属有6个,共分离19株,占0.70%,附生真菌特有的属有14个,共分离120株,占4.45%。内生真菌的Shannon-Wiener index(H')多样性指数(2.44)和Margalef index(R)丰富度指数(2.88)分别小于附生真菌ShannonWiener index(H')多样性指数(2.57)和Margalef index(R)丰富度指数(3.32),但两者的Evenness index(E)均匀度指数几乎相等。青檀叶片内生和附生真菌菌群组成具有较高的相似性,相似性系数达0.70。通过Fisher's exact test分析表明青檀叶片内生和附生真菌菌群组成无明显差异(P=0.072)。  相似文献   

15.
为全面了解着生藻类在建群中群落变化的生态学特性,揭示着生藻类的建群规律,在以丝状藻类为优势藻的生态塘中,采用花岗岩和瓷砖为附着材料,设置水体底部和中部为附着位点,进行频次为10d的采样分析。结果表明,生态塘中共检出8门73属117种着生藻类,其中以硅藻、蓝藻、绿藻为优势类群。同时不同人工基质和不同空间层次条件下着生藻类的建群特征较一致,早期以单细胞硅藻如舟形藻(Navicula sp.)、脆杆藻(Fragilaria sp.)、曲壳藻(Achnanthes sp.)等为优势,后期以丝状藻类如鞘丝藻(Lyngbya sp.)、颤藻(Oscillatoria sp.)、伪鱼腥藻(Pseudanabaena sp.)等为优势;研究结果发现不同人工基质(花岗岩和瓷砖)对着生藻类的种类组成、细胞密度、生物量和藻类多样性无显著影响,花岗岩和瓷砖上附着的着生藻类具有较高的相似性;但不同的空间层次对着生藻类建群特征影响明显,水体底部具有更多的硅藻种类数,中部具有更多的绿藻,随着建群时间的发展,蓝藻比例不断增加;就生物量而言,底部的着生藻类叶绿素a显著高于水体中部,但两者的细胞密度无显著性差异;随着建群过程的发展,水体底部的着生藻类生物量达峰值所需的时间比中部更长。通过相关性分析,生态塘中着生藻类的生长主要受总磷的影响。  相似文献   

16.
Non-siliceous algae in a five meter core from Lake Kinneret (Israel)   总被引:1,自引:1,他引:0  
U. Pollingher 《Hydrobiologia》1986,143(1):213-216
The composition and succession of non-siliceous algae, studied in a five meter core from Lake Kinneret (Israel), are described. Only Chlorophyta species were recorded, probably due to the standard palynological sample processing which was used. In the lower part of the core, from the bottom to 300 cm (interval 5500–2500 years B.P.), Botryococcus braunii was the only common alga. Relevant changes in algal diversity and abundance occur at 300 cm. Many species of green algae were recorded for the first time (Pediastrum, Scenedesmus, Coelastrum, etc.). These changes may be related to an increase in nutrient concentration as a consequence of cultural disturbance. In the interval 300-0 cm, a succession of Pediastrum species is followed. The recovered green algae are extant in the present plankton of Lake Kinneret. They also constitute an important part of the algae found in the profundal sediments today.  相似文献   

17.
Recent DNA sequence analyses have revealed the diversity of algal partners in lichen symbioses. Although morphologically similar, different genetic lineages of photobionts are detected in wide geographic ranges of the same lichen fungal species. We studied the photobiont of the genus Trebouxia, which are known as partners of diverse lichen-forming fungal species in the Mediterranean region. We studied the phylogeny of these algae with a multilocus dataset including three loci: ITS, rbcL, and actin type I gene. The two lineages found, informally named Trebouxia sp. 1 and Trebouxia sp. 2, are related to Trebouxia arboricola/decolorans. The cultivation under axenic conditions succeeded only for one of them so far. We used light microscopy, confocal laser scanning microscopy and transmission electron microscopy for phenotypic characterisation. The ultrastructural characters currently used to describe species in the genus do not support the segregation of Trebouxia sp.1 from Trebouxia arboricola. The preferential presence in Mediterranean climates of these strains suggests eco-physiological adaptation. Despite their asexuality in long living lichen symbioses, coccoid algal lichen partners have apparently diversified genetically and physiologically.  相似文献   

18.
The advective transport of algal cells into the interstices of the hyporheic zone of the River Elbe was spatially and temporally heterogenous. Even deep sediment layers were reached by large phytoplankton species. Therefore, it is suggested that (i) the advective interstitial transport patterns vary between different algal sizes and morphotypes and (ii) sediment characteristics, expressed by the permeability coefficient kf of porous media, affect retention and retardation of surface water algae during subsurface transport. The transport behaviour of different green algae (Chlorella sp., Scenedesmus acuminatus, Desmodesmus communis, and Pediastrum duplex) and algal sized microspheres was tested in flow‐through column experiments with hyporheic sediments. The algal cell transport was directly related to the permeability of the column sediments. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Measurements of pH drift were used to assess the ability of 38 red algal seaweeds to use bicarbonate and to deplete the dissolved inorganic carbon pool (DIC) from seawater medium. Subtidal algae were typically restricted to the use of DIC in the form of dissolved CO2, reducing the initial DIC by only 9%. Intertidal species used both dissolved CO2 and bicarbonate and reduced initial DIC by as much as 70%. DIC reductions and pH compensation points for the intertidal species tested were strongly correlated with their vertical zonation on the rocky shoreline (analysis of variance). DIC acquisition efficiency increased with tidal height, but species from the upper edge of the intertidal demonstrated a reversal of this trend. This general pattern associated with tidal height was observed not only among intertidal red algae in general, but also among four species of the genus Porphyra (P. torta V. Krishnamurthy, P. papenfussii Krishnamurthy, P. perforata J. Agardh, P. fucicola Krishnamurthy) and among four populations of the broadly distributed species Mastocarpus papillatus (C. Agardh). The Mastocarpus observations suggest either that individuals of this species may be able to express alternate strategies for carbon acquisition or that intertidal height may select for survivorship of genotypes with different carbon acquisition strategies. Taken together, these data suggest that the carbon acquisition strategy of intertidal red algae may be an important physiological set of adaptations that is under active evolutionary selection. These physiological differences were not related to phylogeny, tested as membership in red algal families and orders.  相似文献   

20.
Kelp gametophytes were previously observed in nature living endophytically in red algal cell walls. Here we examine the interactions of two kelp species and six red algae in culture. Gametophytes of Nereocystis luetkeana (Mertens) Postels et Ruprecht became endophytic in the cell walls of Griffithsia pacifica Kylin and Antithamnion defectum Kylin, and grew epiphytically in high abundance on G. japonica Okamura and Aglaothamnion oosumiense Itono. Alaria esculenta (Linnaeus) Greville from the Atlantic coast of Nova Scotia became endophytic in Aglaothamnion oosumiense, Antithamnion defectum, Callithamnion sp., G. japonica, G. pacifica, and Pleonosporium abysicola Gardner, all from the Pacific Ocean. Some cultures were treated with phloroglucinol before infection to thicken the cell walls. The endophytic gametophytes were smaller and grew more slowly than gametophytes epiphytic on the same host. N. luetkeana failed to become endophytic in some of the potential hosts, and this may reflect host specificity, or culture artifacts. This work improves our understanding of the process of infection of red algae by kelp gametophytes, and broadens our knowledge of host specificity in endophytic symbioses.Communicated by K. Lüning  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号