首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Representing the greenhouse gas (GHG) emissions attributable to plug‐in electric vehicles (PEV) in vehicle GHG emissions regulations is complex because of spatial and temporal variation in fueling sources and vehicle use. Previous work has shown that the environmental performance of PEVs significantly varies depending on the characteristics of the electricity grid and how the vehicle is driven. This article evaluates the U.S. Environmental Protection Agency's (EPA's) GHG emissions accounting methodology in current and future standards for new electrified vehicles. The current approach employed by the EPA in their 2017–2025 model year light‐duty vehicle GHG regulation is compared with an accounting mechanism where the actual regional sales of PEVs, and the regional electricity emission factor in the year sold, are used to determine vehicle compliance value. Changes to the electricity grid over time and regional vehicle sales are included in the modeling efforts. A projection of a future GHG regulation past the 2017–2025 rule is used to observe the effect of such a regional regulation. The results showed that the complexity involved in tracking and accounting for regional PEV sales will not dramatically increase the effectiveness of the regulations to capture PEV electricity‐related GHG emissions in the absence of a major policy shift. A discussion of the feasibility and effectiveness of a regional standard for PEVs, and notable examples of region‐specific regulations instated in past energy policies, is also addressed.  相似文献   

2.
The life cycle greenhouse gas (GHG) reduction benefits of vehicle lightweighting (LW) were evaluated in a companion article. This article provides an economic assessment of vehicle LW with aluminum and high‐strength steel. Relevant cost information taken from the literature is synthesized, compiled, and formed into estimates of GHG reduction costs through LW. GHG emissions associated with vehicle LW scenarios between 6% and 23% are analyzed alongside vehicle life cycle costs to achieve these LW levels. We use this information to estimate the cost to remove GHG emissions per metric ton by LW, and we further calculate the difference between added manufacturing cost and fuel cost savings from LW. The results show greater GHG savings derived from greater LW and added manufacturing costs as expected. The associated production costs are, however, disproportionately higher than the fuel cost savings associated with higher LW options. A sensitivity analysis of different vehicle classes confirms that vehicle LW is more cost‐effective for larger vehicles. Also, the cost of GHG emissions reductions through lightweighting is compared with alternative GHG emissions reduction technologies for passenger vehicles, such as diesel, hybrid, and plug‐in hybrid electric powertrains. The results find intensive LW to be a competitive and complementary approach relative to the technological alternatives within the automotive industry but more costly than GHG mitigation strategies available to other industries.  相似文献   

3.

Purpose

This study aims to compare the life cycle greenhouse gas (GHG) emissions of two cellulosic bioenergy pathways (i.e., bioethanol and bioelectricity) using different references and functional units. It also aims to address uncertainties associated with a comparative life cycle analysis (LCA) for the two bioenergy pathways.

Methods

We develop a stochastic, comparative life cycle GHG analysis model for a switchgrass-based bioenergy system. Life cycle GHG offsets of the biofuel and bioelectricity pathways for cellulosic bioenergy are compared. The reference system for bioethanol is the equivalent amount of gasoline to provide the same transportation utility (e.g., vehicle driving for certain distance) as bioethanol does. We use multiple reference systems for bioelectricity, including the average US grid, regional grid in the USA according to the North American Electric Reliability Corporation (NERC), and average coal-fired power generation, on the basis of providing the same transportation utility. The functional unit is one unit of energy content (MJ). GHG offsets of bioethanol and bioelectricity relative to reference systems are compared in both grams carbon dioxide equivalents per hectare of land per year (g CO2-eq/ha-yr) and grams carbon dioxide equivalents per vehicle kilometer traveled (g CO2-eq/km). For the latter, we include vehicle cycle to make the comparison meaningful. To address uncertainty and variability, we derive life cycle GHG emissions based on probability distributions of individual parameters representing various unit processes in the life cycle of bioenergy pathways.

Results and discussion

Our results show the choice of reference system and functional unit significantly changes the competition between switchgrass-based bioethanol and bioelectricity. In particular, our results show that the bioethanol pathway produces more life cycle GHG emissions than the bioelectricity pathway on a per unit energy content or a per unit area of crop land basis. However, the bioethanol pathway can offer more GHG offsets than the bioelectricity pathway on a per vehicle kilometer traveled basis when using bioethanol and bioelectricity for vehicle operation. Given the current energy mix of regional grids, bioethanol can potentially offset more GHG emissions than bioelectricity in all grid regions of the USA.

Conclusions

The reference and functional unit can change bioenergy pathway choices. The comparative LCA of bioenergy systems is most useful for decision support only when it is spatially explicit to address regional specifics and differences. The difference of GHG offsets from bioethanol and bioelectricity will change as the grid evolves. When the grids get cleaner over time, the favorability of bioethanol for GHG offsets increases.  相似文献   

4.
This study examines the life cycle energy demand and greenhouse gas (GHG) emissions associated with substituting natural cellulose and kenaf in place of glass fibers in automotive components. Specifically, a 30 wt% glass‐fiber composite component weighing 3 kilograms (kg) was compared to a 30 wt% cellulose fiber composite component (2.65 kg) and 40 wt% kenaf fiber composite component (2.79 kg) for six cars, crossovers, and sport utility vehicles. The use‐phase fuel consumption of the baseline and substitute components, with and without powertrain resizing, were determined using a mass‐induced fuel consumption model based on U.S. Environmental Protection Agency test records. For all vehicles, compared to the baseline glass fiber component, using the cellulose composite material reduced life cycle energy demand by 9.2% with powertrain resizing (7.2% without) and reduced life cycle GHG emissions by 18.6% with powertrain resizing (16.3% without), whereas the kenaf composite component reduced energy demand by 6.0% with powertrain resizing (4.8% without) and GHG emissions by 10.7% with powertrain resizing (9.2% without). For both natural fiber components, the majority of the life cycle energy savings is realized in the use‐phase fuel consumption as a result of the reduced weight of the component.  相似文献   

5.
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne National Laboratory quantifies the life cycle energy consumption and air emissions resulting from the production and use of light‐duty vehicles in the United States. GREET is comprised of two components: GREET 1 represents the fuel cycle of various energy carriers, including automotive fuels, and GREET 2 represents the vehicle cycle, which accounts for the production of vehicles and their constituent materials. The GREET model was updated in 2012 and now includes higher‐resolution material processing and transformation data. This study evaluated how model updates influence material and vehicle life cycle results. First, new primary energy demand and greenhouse gas (GHG) emissions results from GREET 2 for steel, aluminum, and plastics resins are compared herein with those from the previous version of the model as well as industrial results. A part of the comparison is a discussion about causes of differences between results. Included in this discussion is an assessment of the impact of the new material production data on vehicle life cycle results for conventional internal combustion engine (ICE) vehicles by comparing the energy and GHG emission values in the updated and previous versions of GREET 2. Finally, results from a sensitivity analysis are presented for identifying life cycle parameters that most affect vehicle life cycle estimates.  相似文献   

6.
Economic input‐output life cycle assessment (IO‐LCA) models allow for quick estimation of economy‐wide greenhouse gas (GHG) emissions associated with goods and services. IO‐LCA models are usually built using economic accounts and differ from most process‐based models in their use of economic transactions, rather than physical flows, as the drivers of supply‐chain GHG emissions. GHG emissions estimates associated with input supply chains are influenced by the price paid by consumers when the relative prices between individual consumers are different. We investigate the significance of the allocation of GHG emissions based on monetary versus physical units by carrying out a case study of the U.S. electricity sector. We create parallel monetary and mixed‐unit IO‐LCA models using the 2007 Benchmark Accounts of the U.S. economy and sector specific prices for different end users of electricity. This approach is well suited for electricity generation because electricity consumption contributes a significant share of emissions for most processes, and the range of prices paid by electricity consumers allows us to explore the effects of price on allocation of emissions. We find that, in general, monetary input‐output models assign fewer emissions per kilowatt to electricity used by industrial sectors than to electricity used by households and service sectors, attributable to the relatively higher prices paid by households and service sectors. This fact introduces a challenging question of what is the best basis for allocating the emissions from electricity generation given the different uses of electricity by consumers and the wide variability of electricity pricing.  相似文献   

7.
This study explored the impacts of electricity allocation protocols on the life cycle greenhouse gas (GHG) emissions of electricity consumption. The selection of appropriate electricity allocation protocols, methodologies that assign pools of electricity generators to electricity consumers, has not been well standardized. This can lead to very different environmental profiles of similar, electricity‐intensive processes. In an effort to better represent the interconnected nature of the U.S. electrical grid, we propose two new protocols that utilize inter‐regional trade information and localized emission factors to combine generating pools that are sub‐ or supersets of one another. This new nested approach increases the likelihood of capturing important inter‐regional electricity trading and the appropriate assignment of generator emissions to consumers of local and regional electricity. We applied the new and existing protocols to the U.S. primary aluminum industry, an industry whose environmental impact is heavily tied to its electricity consumption. Our analysis found GHG emission factors that were dramatically different than those reported in previous literature. We calculated production‐weighted average emission factors of 19.0 and 19.9 kilograms carbon dioxide equivalent per kilogram of primary aluminum ingot produced when using our two nested electricity allocation protocols. Previous studies reported values of 10.5 and 11.0, at least 42% lower than those found by our study.  相似文献   

8.
The Clean Air Act in the United States identifies diesel‐powered motor vehicles, including transit buses, as significant sources of several criteria pollutants that contribute to ground‐level ozone formation or smog. The effects of air pollution in urban areas are often more significant due to congestion and can lead to respiratory and cardiovascular health impacts. Life cycle assessment (LCA) has been utilized in the literature to compare conventional gasoline‐powered passenger cars with various types of electric and hybrid‐powered alternatives, however, no similarly detailed studies exist for mass transit buses. LCA results from this study indicate that the use phase, consisting of diesel production/combustion for the conventional bus and electricity generation for the electric bus, dominates most impact categories; however, the effects of battery production are significant for global warming, carcinogens, ozone depletion, and eco‐toxicity. There is a clear connection between the mix of power‐generation technologies and the preference for the diesel or electric bus. With the existing U.S. average grid, there is a strong preference for the conventional diesel bus over the electric bus when considering global warming impacts alone. Policy makers must consider regional variations in the electricity grid prior to recommending the use of battery electric buses to reduce carbon dioxide (CO2) emissions. This study found that the electric bus was preferable in only eight states, including Washington and Oregon. Improvements in battery technology reduce the life cycle impacts from the electric bus, but the electricity grid makeup is the dominant variable.  相似文献   

9.
In this article we consider interactions between life cycle emissions and materials flows associated with lightweighting (LW) automobiles. Both aluminum and high‐strength steel (HSS) lightweighting are considered, with LW ranging from 6% to 23% on the basis of literature references and input from industry experts. We compare the increase in greenhouse gas (GHG) emissions associated with producing lightweight vehicles with the saved emissions during vehicle use. This yields a calculation of how many years of vehicle use are required to offset the added GHG emissions from the production stage. Payback periods for HSS are shorter than for aluminum. Nevertheless, achieving significant LW with HSS comparable to aluminum‐intensive vehicles requires not only material substitution but also the achievement of secondary LW by downsizing of other vehicle components in addition to the vehicle structure. GHG savings for aluminum LW varies strongly with location where the aluminum is produced and whether secondary aluminum can be utilized instead of primary. HSS is less sensitive to these parameters. In principle, payback times for vehicles lightweighted with aluminum can be shortened by closed‐loop recycling of wrought aluminum (i.e., use of secondary wrought aluminum). Over a 15‐year time horizon, however, it is unlikely that this could significantly reduce emissions from the automotive industry, given the challenges involved with enabling a closed‐loop aluminum infrastructure without downcycling automotive body structures.  相似文献   

10.
Electric vehicles (EVs) coupled with low‐carbon electricity sources offer the potential for reducing greenhouse gas emissions and exposure to tailpipe emissions from personal transportation. In considering these benefits, it is important to address concerns of problem‐shifting. In addition, while many studies have focused on the use phase in comparing transportation options, vehicle production is also significant when comparing conventional and EVs. We develop and provide a transparent life cycle inventory of conventional and electric vehicles and apply our inventory to assess conventional and EVs over a range of impact categories. We find that EVs powered by the present European electricity mix offer a 10% to 24% decrease in global warming potential (GWP) relative to conventional diesel or gasoline vehicles assuming lifetimes of 150,000 km. However, EVs exhibit the potential for significant increases in human toxicity, freshwater eco‐toxicity, freshwater eutrophication, and metal depletion impacts, largely emanating from the vehicle supply chain. Results are sensitive to assumptions regarding electricity source, use phase energy consumption, vehicle lifetime, and battery replacement schedules. Because production impacts are more significant for EVs than conventional vehicles, assuming a vehicle lifetime of 200,000 km exaggerates the GWP benefits of EVs to 27% to 29% relative to gasoline vehicles or 17% to 20% relative to diesel. An assumption of 100,000 km decreases the benefit of EVs to 9% to 14% with respect to gasoline vehicles and results in impacts indistinguishable from those of a diesel vehicle. Improving the environmental profile of EVs requires engagement around reducing vehicle production supply chain impacts and promoting clean electricity sources in decision making regarding electricity infrastructure.  相似文献   

11.
玉米秸秆基纤维素乙醇生命周期能耗与温室气体排放分析   总被引:2,自引:0,他引:2  
生命周期评价是目前分析产品或工艺的环境负荷唯一标准化工具,利用其生命周期分析方法可以有效地研究纤维素乙醇生命周期能耗与温室气体排放问题。为了定量解释以玉米秸秆为原料的纤维素乙醇的节能和温室气体减排潜力,利用生命周期分析方法对以稀酸预处理、酶水解法生产的玉米秸秆基乙醇进行了生命周期能耗与温室气体排放分析,以汽车行驶1 km为功能单位。结果表明:与汽油相比,纤维素乙醇E100 (100%乙醇) 和E10 (乙醇和汽油体积比=1∶9) 生命周期化石能耗分别减少79.63%和6.25%,温室气体排放分别减少53.98%和6.69%;生物质阶段化石能耗占到总化石能耗68.3%,其中氮肥和柴油的生命周期能耗贡献最大,分别占到生物质阶段的45.78%和33.26%;工厂电力生产过程的生命周期温室气体排放最多,占净温室气体排放量的42.06%,提升技术减少排放是降低净排放的有效措施。  相似文献   

12.
Literature data for vehicle life cycle water consumption are limited and contradictory; there are no published estimates of vehicle life cycle water withdrawal. To place future discussions of sustainable mobility on a firmer technical basis, we report the results of a cradle‐to‐grave assessment of water withdrawal and water consumption for the gasoline internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) variants of the 2012 Ford Focus. U.S. average life cycle water withdrawal and consumption of 531 and 131 cubic meters (m3), respectively, for a lifetime driving distance of 160,000 miles are estimated for the Focus ICEV using E10 gasoline. Employing our upper bound of water use in oil refinery operations and corn and ethanol production increases the life cycle withdrawal and consumption to 1,570 and 761 m3, respectively. The U.S. average life cycle water withdrawal for the Focus BEV is 3,770 m3 (7 times that for the ICEV, reflecting the large volume of cooling water required during electricity generation), whereas the water consumption is 170 m3 (comparable to that for the ICEV). Vehicle use is the most significant phase of the life cycle with fuel production, accounting for 49% of water withdrawal and 82% of water consumption for the ICEV. For the BEV, fuel (electricity) production accounts for 92% of life cycle water withdrawal and 85% of consumption. The results highlight the importance of renewable and sustainable fuels and increased vehicle energy efficiency in providing sustainable mobility.  相似文献   

13.
Under some circumstances, electric vehicles (EVs) can reduce overall environmental impacts by displacing internal combustion engine vehicles (ICEVs) and by enabling more intermittent renewable energy sources (RES) by charging with surplus power in periods of low demand. However, the net effects on greenhouse gas (GHG) emissions of adding EVs into a national or regional electricity system are complex and, for a system with significant RES, are affected by the presence of storage capacity, such as pumped hydro storage (PHS). This article takes the Portuguese electricity system as a specific example, characterized by relatively high capacities of wind generation and PHS. The interactions between EVs and PHS are explored, using life cycle assessment to compare changes in GHG emissions for different scenarios with a fleet replacement model to describe the introduction of EVs. Where there is sufficient storage capacity to ensure that RES capacity is exploited without curtailment, as in Portugal, any additional demand, such as introduction of EVs, must be met by the next marginal technology. Whether this represents an average increase or decrease in GHG emissions depends on the carbon intensity of the marginal generating technology and on the fuel efficiency of the ICEVs displaced by the EVs, so that detailed analysis is needed for any specific energy system, allowing for future technological improvements. A simple way to represent these trade‐offs is proposed as a basis for supporting strategic policies on introduction of EVs.  相似文献   

14.
This study investigates the life cycle GHG emissions of jet fuel produced via the hydroprocessed esters and fatty acids (HEFA) pathway from canola grown in western Canada, with a focus on characterizing regional influences on emissions. We examine the effects of geographic variations in soil type, agricultural inputs, farming practices, and direct land use changes on life cycle GHG emissions. We utilize GREET 2016 but replace default feedstock production inputs with geographically representative data for canola production across eight western Canadian regions (representing 99% of Canada's canola production) and replace the default conversion process with data from a novel process model previously developed in ASPEN in our research group wherein oil extraction is integrated with the HEFA‐based fuel production process. Although canola production inputs and yields vary across the regions, resulting life cycle GHG emissions are similar if effects of land use and land management changes (LMC) are not included; 44–48 g CO2e/MJ for the eight regions (45%–50% reduction compared to petroleum jet fuel). Results are considerably more variable, 16–58 g CO2e/MJ, when including effects of land use and LMC directly related to conversion of lands from other uses to canola production (34%–82% reduction compared to petroleum jet fuel). We establish the main sources of emissions in the life cycle of canola jet fuel (N‐fertilizer and related emissions, fuel production), identify that substantially higher emissions may occur when using feedstock sourced from regions where conversion of forested land to cropland had occurred, and identify benefits of less intense tillage practices and increased use of summerfallow land. The methods and findings are relevant in jurisdictions internationally that are incorporating GHG emissions reductions from aviation fuels in a low carbon fuel market or legislating carbon intensity reduction requirements.  相似文献   

15.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

16.
Greenhouse gas (GHG) intensity is frequently used to assess the mitigation potential of biofuels; however, failure to quantify other environmental impacts may result in unintended consequences, effectively shifting the environmental burden of fuel production rather than reducing it. We modeled production of E85, a gasoline/ethanol blend, from forage sorghum (Sorghum bicolor cv. photoperiod LS) grown, processed, and consumed in California's Imperial Valley in order to evaluate the influence of nitrogen (N) management on well‐to‐wheel (WTW) environmental impacts from cellulosic ethanol. We simulated 25 N management scenarios varying application rate, application method, and N source. Life cycle environmental impacts were characterized using the EPA's criteria for emissions affecting the environment and human health. Our results suggest efficient use of N is an important pathway for minimizing WTW emissions on an energy yield basis. Simulations in which N was injected had the highest nitrogen use efficiency. Even at rates as high as 450 kg N ha?1, injected N simulations generated a yield response sufficient to outweigh accompanying increases in most N‐induced emissions on an energy yield basis. Thus, within the biofuel life cycle, trade‐offs across productivity, GHG intensity, and pollutant loads may be possible to avoid at regional to global scales. However, trade‐offs were seemingly unavoidable when impacts from E85 were compared to those of conventional gasoline. The GHG intensity of sorghum‐derived E85 ranged from 29 to 44 g CO2 eq MJ?1, roughly 1/3 to 1/2 that of gasoline. Conversely, emissions contributing to local air and water pollution tended to be substantially higher in the E85 life cycle. These adverse impacts were strongly influenced by N management and could be partially mitigated by efficient application of N fertilizers. Together, our results emphasize the importance of minimizing on‐farm emissions in maximizing both the environmental benefits and profitability of biofuels.  相似文献   

17.
Environmental impacts of hybrid and electric vehicles—a review   总被引:2,自引:0,他引:2  

Purpose

A literature review is undertaken to understand how well existing studies of the environmental impacts of hybrid and electric vehicles (EV) address the full life cycle of these technologies. Results of studies are synthesized to compare the global warming potential (GWP) of different EV and internal combustion engine vehicle (ICEV) options. Other impacts are compared; however, data availability limits the extent to which this could be accomplished.

Method

We define what should be included in a complete, state-of-the-art environmental assessment of hybrid and electric vehicles considering components and life cycle stages, emission categories, impact categories, and resource use and compare the content of 51 environmental assessments of hybrid and electric vehicles to our definition. Impact assessment results associated with full life cycle inventories (LCI) are compared for GWP as well as emissions of other pollutants. GWP results by life cycle stage and key parameters are extracted and used to perform a meta-analysis quantifying the impacts of vehicle options.

Results

Few studies provide a full LCI for EVs together with assessment of multiple impacts. Research has focused on well to wheel studies comparing fossil fuel and electricity use as the use phase has been seen to dominate the life cycle of vehicles. Only very recently have studies begun to better address production impacts. Apart from batteries, very few studies provide transparent LCIs of other key EV drivetrain components. Estimates of EV energy use in the literature span a wide range, 0.10?C0.24?kWh/km. Similarly, battery and vehicle lifetime plays an important role in results, yet lifetime assumptions range between 150,000?C300,000?km. CO2 and GWP are the most frequently reported results. Compiled results suggest the GWP of EVs powered by coal electricity falls between small and large conventional vehicles while EVs powered by natural gas or low-carbon energy sources perform better than the most efficient ICEVs. EV results in regions dependant on coal electricity demonstrated a trend toward increased SO x emissions compared to fuel use by ICEVs.

Conclusions

Moving forward research should focus on providing consensus around a transparent inventory for production of electric vehicles, appropriate electricity grid mix assumptions, the implications of EV adoption on the existing grid, and means of comparing vehicle on the basis of common driving and charging patterns. Although EVs appear to demonstrate decreases in GWP compared to conventional ICEVs, high efficiency ICEVs and grid-independent hybrid electric vehicles perform better than EVs using coal-fired electricity.  相似文献   

18.
Wu M  Wu Y  Wang M 《Biotechnology progress》2006,22(4):1012-1024
We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.  相似文献   

19.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

20.
For many companies, the greenhouse gas (GHG) emissions associated with their purchased and consumed electricity form one of the largest contributions to the GHG emissions that result from their activities. Currently, hourly variations in electricity grid emissions are not considered by standard GHG accounting protocols, which apply a national grid emission factor (EF), potentially resulting in erred estimates for the GHG emissions. In this study, a method is developed that calculates GHG emissions based on real‐time data, and it is shown that the use of hourly electricity grid EFs can significantly improve the accuracy of the GHG emissions that are attributed to the purchased and consumed electricity of a company. A model analysis for the electricity delivered to the Spanish grid in 2012 reveals that, for companies operating during the day, GHG emissions calculated by the real‐time method are estimated to be up to 5% higher (and in some special cases up to 9% higher) than the emissions calculated by the conventional method in which a national grid EF is applied, whereas for companies operating during nightly hours, GHG emissions are estimated to be as low as 3% below the GHG emissions determined by the conventional method. A significant error can therefore occur in the organizational carbon footprint (CF) of a company and, consequently, also in the product CF. It is recommended that hourly EFs be developed for other countries and power grids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号