首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

2.
3.
Calnexin (CNX) is an integral membrane protein of endoplasmic reticulum (ER) and is a critical component of ER quality control machinery. It acts as a chaperone and ensures proper folding of newly synthesised glycoproteins. CNX shares a considerable homology with its luminal counterpart calreticulin (CRT). Together, they constitute CNX/CRT cycle which is imperative for proper folding of nascent proteins. CNX deficient organisms develop severe complications because of improper folding of proteins and consequently ER stress. CNX maintains calcium homeostasis by binding to the Ca2+ which is a central node in various signaling pathways. Phosphorylation of cytoplasmic tail of CNX controls the sarco endoplasmic reticulum calcium ATPase and thus the movement of Ca2+ in and out of its store-house, i.e. ER. Our studies on Oryza sativa CNX (OsCNX) reveal constitutive expression at various developmental stages and various tissues, thereby proving its requirement throughout the plant development. Further, its expression under various stress conditions gives an insight of the crosstalk existing between ER stress and abiotic stress signaling. This was confirmed by heterologous expression of OsCNX (OsCNX-HE) in tobacco and the OsCNX-HE lines were observed to exhibit better germination under mannitol stress and survival under dehydration stress conditions. The dehydration tolerance conferred by OsCNX appears to be ABA-dependent pathway.  相似文献   

4.
Swanton E  High S  Woodman P 《The EMBO journal》2003,22(12):2948-2958
The endoplasmic (ER) quality control apparatus ensures that misfolded or unassembled proteins are not deployed within the cell, but are retained in the ER and degraded. A glycoprotein-specific system involving the ER lectins calnexin and calreticulin is well documented, but very little is known about mechanisms that may operate for non-glycosylated proteins. We have used a folding mutant of a non- glycosylated membrane protein, proteolipid protein (PLP), to examine the quality control of this class of polypeptide. We find that calnexin associates with newly synthesized PLP molecules, binding stably to misfolded PLP. Calnexin also binds stably to an isolated transmembrane domain of PLP, suggesting that this chaperone is able to monitor the folding and assembly of domains within the ER membrane. Notably, this glycan-independent interaction with calnexin significantly retards the degradation of misfolded PLP. We propose that calnexin contributes to the quality control of non-glycosylated polytopic membrane proteins by binding to misfolded or unassembled transmembrane domains, and discuss our findings in relation to the role of calnexin in the degradation of misfolded proteins.  相似文献   

5.
Li HD  Liu WX  Michalak M 《PloS one》2011,6(7):e21678

Background

Calnexin, together with calreticulin, constitute the calnexin/calreticulin cycle. Calnexin is a type I endoplasmic reticulum integral membrane protein and molecular chaperone responsible for the folding and quality control of newly-synthesized (glyco)proteins. The endoplasmic reticulum luminal domain of calnexin is responsible for lectin-like activity and interaction with nascent polypeptide chains. The role of the C-terminal, cytoplasmic portion of calnexin is not clear.

Methodology/Principal Findings

Using yeast two hybrid screen and immunoprecipitation techniques, we showed that the Src homology 3-domain growth factor receptor-bound 2-like (Endophilin) interacting protein 1 (SGIP1), a neuronal specific regulator of endocytosis, forms complexes with the C-terminal cytoplasmic domain of calnexin. The calnexin cytoplasmic C-tail interacts with SGIP1 C-terminal domains containing the adaptor complexes medium subunit (Adap-Comp-Sub) region. Calnexin-deficient cells have enhanced clathrin-dependent endocytosis in neuronal cells and mouse neuronal system. This is reversed by expression of full length calnexin or calnexin C-tail.

Conclusions/Significance

We show that the effects of SGIP1 and calnexin C-tail on clathrin-dependent endocytosis are due to modulation of the internalization of the receptor-ligand complexes. Enhanced clathrin-dependent endocytosis in the absence of calnexin may contribute to the neurological phenotype of calnexin-deficient mice.  相似文献   

6.
Calreticulin and calnexin are homologous lectins that serve as molecular chaperones for glycoproteins in the endoplasmic reticulum of eukaryotic cells. Here we show that calreticulin depletion specifically accelerates the maturation of cellular and viral glycoproteins with a modest decrease in folding efficiency. Calnexin depletion prevents proper maturation of some proteins such as influenza hemagglutinin but does not interfere appreciably with the maturation of several others. A dramatic loss of stringency in the ER quality control with transport at the cell surface of misfolded glycoprotein conformers is only observed when substrate access to both calreticulin and calnexin is prevented. Although not fully interchangeable during assistance of glycoprotein folding, calreticulin and calnexin may work, independently, as efficient and crucial factors for retention in the ER of nonnative polypeptides.  相似文献   

7.
Calnexin (CNX) and calreticulin (CRT) are endoplasmic reticulum (ER) chaperones. CNX is a type I transmembrane protein and CRT is a soluble CNX homologue. In the ER, CNX and CRT are important for Ca(2+) homeostasis and protein maturation. Here, we describe the full-length cDNA of the first mollusk CNX (cgCNX) and a second mollusk CRT (cgCRT) from the oyster Crassostrea gigas. CgCNX, containing 3255bp, was composed of a 1764bp open reading frame (ORF) that encodes a 588-amino acid protein. CgCRT, containing 1727bp, was composed of a 1242bp ORF that encodes a 414-amino acid protein. CgCNX and cgCRT contains an N-terminal 21- and 16-amino acid sequence, respectively, which is characteristic of a signal sequence. At the C-terminus, cgCRT also contains the KDEL (-Lys-Asp-Glu-Leu) peptide motif suggesting that cgCRT localizes in the ER. Northern blot analysis showed that both cgCNX and cgCRT mRNAs are induced by air exposure. The expression patterns of cgCNX mRNA differed from those of cgCRT during air exposure. This suggests that these two molecular chaperones have different roles in the response to air exposure.  相似文献   

8.
The subcellular distribution of calnexin is mediated by PACS-2   总被引:1,自引:0,他引:1       下载免费PDF全文
Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.  相似文献   

9.
Sendai virus envelope glycoproteins, F and HN, mature during their transport through the endoplasmic reticulum (ER) and Golgi complex. To better understand their maturation processes in the ER, we investigated the time course of their interactions with three ER- resident molecular chaperones, BiP, calnexin (CNX), and calreticulin (CRT), in Sendai virus-infected HeLa cells. Pulse-chase and immunoprecipitation analyses using antibodies against each virus glycoprotein or ER chaperone revealed that F precursor interacted with CNX transiently (t(1/2)=8 min), while HN protein displayed longer and sequential interactions with BiP (t(1/2)=8 min), CNX (t(1/2)=15 min), and CRT (t(1/2)=20 min). HN interacted with the three ER chaperones not only as a monomer but also as a tetramer for several hours, suggesting mechanism(s) to undergo chaperone-mediated quality control of an assembled HN oligomer in the ER. The kinetics of dissociation of the HN-chaperone complexes exhibited a marked delay in the presence of proteasome inhibitors, suggesting that a part of HN associated with BiP, CNX, and CRT is destined to be degraded in the proteasome-dependent pathway. Further, the associations between virus glycoproteins and CNX or CRT were impaired by castanospermine, an inhibitor of ER glucosidase I and II, confirming that these interactions require monoglucosylated oligosaccharide on F(0) and HN peptides. These findings together suggest that newly synthesized F protein undergoes rapid maturation in the ER through a transient interaction with CNX, whereas HN protein requires more complex processes involving prolonged association with BiP, CNX, and CRT for its quality control in the ER.  相似文献   

10.
Calnexin and calreticulin are homologous lectin chaperones that assist maturation of cellular and viral glycoproteins in the mammalian endoplasmic reticulum. Calnexin and calreticulin share the same specificity for monoglucosylated protein-bound N-glycans but associate with a distinct set of newly synthesized polypeptides. We report here that most calnexin substrates do not associate with calreticulin even upon selective calnexin inactivation, while BiP associates more abundantly with nascent polypeptides under these conditions. Calreticulin associated more abundantly with orphan calnexin substrates only in infected cells and preferentially with polypeptides of viral origin, showing stronger dependence of model viral glycoproteins on endoplasmic reticulum lectins. This may explain why inactivation of the calnexin cycle affects viral replication and infectivity but not viability of mammalian cells.  相似文献   

11.
Calnexin and calreticulin are membrane-bound and soluble chaperones, respectively, of the endoplasmic reticulum (ER) which interact transiently with a broad spectrum of newly synthesized glycoproteins. In addition to sharing substantial sequence identity, both calnexin and calreticulin bind to monoglucosylated oligosaccharides of the form Glc(1)Man(5-9)GlcNAc(2), interact with the thiol oxidoreductase, ERp57, and are capable of acting as chaperones in vitro to suppress the aggregation of non-native proteins. To understand how these diverse functions are coordinated, we have localized the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. Recent structural studies suggest that both proteins consist of a globular domain and an extended arm domain comprised of two sequence motifs repeated in tandem. Our results indicate that the primary lectin site of calnexin and calreticulin resides within the globular domain, but the results also point to a much weaker secondary site within the arm domain which lacks specificity for monoglucosylated oligosaccharides. For both proteins, a site of interaction with ERp57 is centered on the arm domain, which retains approximately 50% of binding compared with full-length controls. This site is in addition to a Zn(2+)-dependent site located within the globular domain of both proteins. Finally, calnexin and calreticulin suppress the aggregation of unfolded proteins via a polypeptide binding site located within their globular domains but require the arm domain for full chaperone function. These findings are integrated into a model that describes the interaction of glycoprotein folding intermediates with calnexin and calreticulin.  相似文献   

12.
13.
Calnexin and calreticulin are molecular chaperones, which are involved in the protein folding, assembly, and retention/retrieval. We know that calreticulin-deficiency is lethal in utero, but do not understand the contribution of chaperone function to this phenotype. Here we studied protein folding and chaperone function of calnexin in the absence of calreticulin. We show that protein folding is accelerated and quality control is compromised in calreticulin-deficient cells. Calnexin-substrate association is severely reduced, leading to accumulation of unfolded proteins and a triggering of the unfolded protein response (UPR). PERK and Ire1alpha and eIF2alpha are also activated in calreticulin-deficient cells. We show that the absence of calreticulin can have devastating effects on the function of the others, compromising overall quality control of the secretory pathway and activating UPR-dependent pathways.  相似文献   

14.
Cystic fibrosis (CF) is caused by the mutation in CF transmembrane conductance regulator (CFTR), a cAMP-dependent Cl(-) channel at the plasma membrane of epithelium. The most common mutant, DeltaF508 CFTR, has competent Cl(-) channel function, but fails to express at the plasma membrane since it is retained in the endoplasmic reticulum (ER) by the ER quality control system. Here, we show that calnexin (CNX) is not necessary for the ER retention of DeltaF508 CFTR. Our data show that CNX knockout (KO) does not affect the biosynthetic processing, cellular localization or the Cl(-) channel function of DeltaF508 CFTR. Importantly, cAMP-induced Cl(-) current in colonic epithelium from CNX KO/DeltaF508 CFTR mice was comparable with that of DeltaF508 CFTR mice, indicating that CNX KO failed to rescue the ER retention of DeltaF508 CFTR in vivo. Moreover, we show that CNX assures the efficient expression of WT CFTR, but not DeltaF508 CFTR, by inhibiting the proteasomal degradation, indicating that CNX might stimulate the productive folding of WT CFTR, but not DeltaF508 CFTR, which has folding defects.  相似文献   

15.
Calnexin was initially identified as an endoplasmic reticulum (ER) type I integral membrane protein, phosphorylated on its cytosolic domain by ER-associated protein kinases. Although the role of the ER luminal domain of calnexin has been established as a constituent of the molecular chaperone machinery of the ER, less is known about the role of the cytosolic phosphorylation of calnexin. Analysis by two-dimensional phosphopeptide maps revealed that calnexin was in vitro phosphorylated in isolated microsomes by casein kinase 2 (CK2) and extracellular-signal regulated kinase-1 (ERK-1) at sites corresponding to those for in vivo phosphorylation. In canine pancreatic microsomes, synergistic phosphorylation by CK2 and ERK-1 led to increased association of calnexin with membrane-bound ribosomes. In vivo, calnexin-associated ERK-1 activity was identified by co-immunoprecipitation. This activity was abolished in cells expressing a dominant-negative MEK-1. Activation of ERK-1 in cells by addition of serum led to a 4-fold increase in ribosome-associated calnexin over unstimulated cells. Taken together with studies revealing calnexin association with CK2 and ERK-1, a model is proposed whereby phosphorylation of calnexin leads to a potential increase in glycoprotein folding close to the translocon.  相似文献   

16.
Calnexin and calreticulin are lectin-like molecular chaperones that promote folding and assembly of newly synthesized glycoproteins in the endoplasmic reticulum. While it is well established that they interact with substrate monoglucosylated N-linked oligosaccharides, it has been proposed that they also interact with polypeptide moieties. To test this notion, glycosylated forms of bovine pancreatic ribonuclease (RNase) were translated in the presence of microsomes and their folding and association with calnexin and calreticulin were monitored. When expressed with two N-linked glycans in the presence of micromolar concentrations of deoxynojirimycin, this small soluble protein was found to bind firmly to both calnexin and calreticulin. The oligosaccharides were necessary for association, but it made no difference whether the RNase was folded or not. This indicated that unlike other chaperones, calnexin and calreticulin do not select their substrates on the basis of folding status. Moreover, enzymatic removal of the oligosaccharide chains using peptide N-glycosidase F or removal of the glucoses by ER glucosidase II resulted in dissociation of the complexes. This indicated that the lectin-like interaction, and not a protein-protein interaction, played the central role in stabilizing RNase-calnexin/calreticulin complexes.  相似文献   

17.
Del Bem LE 《Genetica》2011,139(2):255-259
Calreticulin and calnexin are Ca2+-binding chaperones localized in the endoplasmic reticulum of eukaryotes acting in glycoprotein folding quality control and Ca2+ homeostasis. The evolutionary histories of calreticulin and calnexin gene families were inferred by comprehensive phylogenetic analyses using 18 completed genomes and ESTs covering the major green plants groups, from green algae to angiosperms. Calreticulin and calnexin possibly share a common origin, and both proteins are present along all green plants lineages. The calreticulin founder gene within green plants duplicated in early tracheophytes leading to two possible groups of orthologs with specialized functions, followed by lineage-specific gene duplications in spermatophytes. Calnexin founder gene in land plants was inherited from basal green algae during evolution in a very conservative copy number. A comprehensive classification in possible groups of orthologs and a catalog of calreticulin and calnexin genes from green plants are provided.  相似文献   

18.
Calnexin is a membrane-bound protein of the ER in animal cells (Wada et al., 1991). It shows considerable similarity to the major calcium-sequestering protein of the ER lumen, calreticulin, with two calcium-binding regions--a high-affinity, low-capacity region in the ER lumen and a low-affinity, high-capacity region in the cytoplasm. The protein is postulated to act as a calcium-regulated chaperone during protein maturation (Ou et al., 1993). We have isolated a genomic sequence showing significant homology to the animal gene over the predicted coding sequence (Table I). A partial cDNA from Zea mays was isolated from an expression library made from 6-d coleoptiles (Clontech, Palo Alto, CA). The library was screened using a monoclonal antibody raised against a small number of microsomal proteins resulting from a partial purification of plasma membrane Ca2+ ATPase (Briars et al., 1988). The partial cDNA showed sequence homology to the calcium-binding region common to calreticulin and calnexin. The fragment was used to screen a genomic library constructed from Arabidopsis thaliana (cv Larasbonerecta), and a 15-kb fragment was isolated and subcloned and the relevant subfragments were sequenced. The coding region contains five introns, two in the N-terminal region and three in the C-terminal region. The predicted amino acid sequence shows a high level of homology with the animal calnexin, although the terminal highly acidic calcium-binding region is shorter. A cDNA for a putative homolog of calnexin was isolated from A. thaliana (cv Columbia) by Huang et al.(1993); our coding sequence shows 85% identity and 92% similarity determined by FASTA (Wisconsin Genetics Computer Group package); however, the differences are greater than would be expected between cultivars of the same species. A Southern blot probed with DNA from the central calcium-binding region shows multiple bands. This, combined with the sequence heterogeneity, suggests that calnexin belongs to a family of related genes.  相似文献   

19.
Calnexin is a ubiquitously expressed type I membrane protein which is exclusively localized in the endoplasmic reticulum (ER). In mammalian cells, calnexin functions as a chaperone molecule and plays a key role in glycoprotein folding and quality control within the ER by interacting with folding intermediates via their monoglucosylated glycans. In order to gain more insight into the physiological roles of calnexin, we have generated calnexin gene-deficient mice. Despite its profound involvement in protein folding, calnexin is not essential for mammalian-cell viability in vivo: calnexin gene knockout mice were carried to full term, although 50% died within 48 h and the majority of the remaining mice had to be sacrificed within 4 weeks, with only a very few mice surviving to 3 months. Calnexin gene-deficient mice were smaller than their littermates and showed very obvious motor disorders, associated with a dramatic loss of large myelinated nerve fibers. Thus, the critical contribution of calnexin to mammalian physiology is tissue specific.  相似文献   

20.
Calnexin is an endoplasmic reticulum (ER) resident type I integral membrane phosphoprotein. This protein is actively involved in the ER glycoprotein quality control through its luminal domain. In addition, although calnexin also interacts with membrane-bound ribosomes, the nature of this interaction remains poorly characterized. Herein, using in vitro approaches, we demonstrate that calnexin cytosolic domain directly interacts with, at least 5 ribosomal proteins. Furthermore, we characterize more specifically its interaction with the ribosomal protein L4 and that L4 binds to the 19 carboxy terminal amino acids of calnexin. We suggest that the direct interaction of calnexin with membrane-bound ribosomes may represent a regulatory mechanism for its lectin-like chaperone function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号