首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sit4p is the catalytic subunit of a ceramide-activated PP2A-like phosphatase that regulates cell cycle, mitochondrial function, oxidative stress resistance and chronological lifespan in yeast. In this study, we show that hexokinase 2 (Hxk2p) is hyperphosphorylated in sit4Δ mutants grown in glucose medium by a Snf1p-independent mechanism and Hxk2p-S15A mutation suppresses phenotypes associated with SIT4 deletion, namely growth arrest at G1 phase, derepression of mitochondrial respiration, H2O2 resistance and lifespan extension. Consistently, the activation of Sit4p in isc1Δ mutants, which has been associated with premature aging, leads to Hxk2p hypophosphorylation, and the expression of Hxk2p-S15E increases the lifespan of isc1Δ cells. The overall results suggest that Hxk2p functions downstream of Sit4p in the control of cell cycle, mitochondrial function, oxidative stress resistance and chronological lifespan.  相似文献   

4.
NDG‐4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg‐4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long‐chain omega‐6 polyunsaturated fatty acid dihommogamma‐linolenic acid (DGLA). Two other proteins, NRF‐5 and NRF‐6, a homolog of a mammalian secreted lipid binding protein and a NDG‐4 homolog, respectively, have previously been shown to function in the same lipid transport pathway. Here, we report that mutation of the NDG‐4 protein results in increased organismal stress resistance and lifespan. When NDG‐4 function and insulin/IGF‐1 signaling are reduced simultaneously, maximum lifespan is increased almost fivefold. Thus, longevity conferred by mutation of ndg‐4 is partially overlapping with insulin signaling. The nuclear hormone receptor NHR‐80 (HNF4 homolog) is required for longevity in germline less animals. We find that NHR‐80 is also required for longevity of ndg‐4 mutants. Moreover, we find that nrf‐5 and nrf‐6 mutants also have extended lifespan and increased stress resistance, suggesting that altered lipid transport and metabolism play key roles in determining lifespan.  相似文献   

5.
6.
《Autophagy》2013,9(7):870-873
The tumor suppressor protein p53 has a major impact on organismal aging. Recently it has become clear that p53 does not only control DNA damage responses, senescence and apoptosis but that p53 has also a major role in the control of autophagy. Thus, deletion, depletion or inhibition of p53 induces autophagy in human, mouse and nematode cells. We therefore tested the hypothesis that the mutation of the p53 orthologue cep-1 might increase the lifespan of Caenorhabditis elegans through an increase in baseline autophagy. For this, we evaluated the survival of nematodes lacking cep-1, alone or in combination with RNA inference with the autophagy gene bec-1 (which encodes the orthologue of Atg6/Beclin 1). cep-1 mutants exhibited a prolonged life span. While bec-1 depletion during adult life did not cause significant modification of the life expectancy of wild type controls, it did reduce the increased life span of cep-1 mutants down to approximately normal levels. These results indicate that the life span-extending effect of the cep-1 mutation is mediated by autophagy. These results lend support to the hypothesis that autophagy has a broad positive impact on organismal aging.  相似文献   

7.
Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin‐linked kinase (ilk) and β1‐integrin (myospheroid, mys) in Drosophila, which colocalize near cardiomyocyte contacts and Z‐bands, we find that reduced ilk or mys function prevents the typical changes of cardiac aging seen in wildtype, such as arrhythmias. In particular, the characteristic increase in cardiac arrhythmias with age is prevented in ilk and mys heterozygous flies with nearly identical genetic background, and they live longer, in line with previous findings in Caenorhabditis elegans for ilk and in Drosophila for mys. Consistent with these findings, we observed elevated β1‐integrin protein levels in old compared with young wild‐type flies, and cardiac‐specific overexpression of mys in young flies causes aging‐like heart dysfunction. Moreover, moderate cardiac‐specific knockdown of integrin‐linked kinase (ILK)/integrin pathway‐associated genes also prevented the decline in cardiac performance with age. In contrast, strong cardiac knockdown of ilk or ILK‐associated genes can severely compromise cardiac integrity, including cardiomyocyte adhesion and overall heart function. These data suggest that ilk/mys function is necessary for establishing and maintaining normal heart structure and function, and appropriate fine‐tuning of this pathway can retard the age‐dependent decline in cardiac performance and extend lifespan. Thus, ILK/integrin‐associated signaling emerges as an important and conserved genetic mechanism in longevity, and as a new means to improve age‐dependent cardiac performance, in addition to its vital role in maintaining cardiac integrity.  相似文献   

8.
The most important physiological mechanism mediating enhanced exercise performance is increased sympathetic, beta adrenergic receptor (β‐AR), and adenylyl cyclase (AC) activity. This is the first report of decreased AC activity mediating increased exercise performance. We demonstrated that AC5 disruption, that is, knock out (KO) mice, a longevity model, increases exercise performance. Importantly for its relation to longevity, exercise was also improved in old AC5 KO. The mechanism resided in skeletal muscle rather than in the heart, as confirmed by cardiac‐ and skeletal muscle‐specific AC5 KO's, where exercise performance was no longer improved by the cardiac‐specific AC5 KO, but was by the skeletal muscle‐specific AC5 KO, and there was no difference in cardiac output during exercise in AC5 KO vs. WT. Mitochondrial biogenesis was a major mechanism mediating the enhanced exercise. SIRT1, FoxO3a, MEK, and the anti‐oxidant, MnSOD were upregulated in AC5 KO mice. The improved exercise in the AC5 KO was blocked with either a SIRT1 inhibitor, MEK inhibitor, or by mating the AC5 KO with MnSOD hetero KO mice, confirming the role of SIRT1, MEK, and oxidative stress mechanisms. The Caenorhabditis elegans worm AC5 ortholog, acy‐3 by RNAi, also improved fitness, mitochondrial function, antioxidant defense, and lifespan, attesting to the evolutionary conservation of this pathway. Thus, decreasing sympathetic signaling through loss of AC5 is not only a mechanism to improve exercise performance, but is also a mechanism to improve healthful aging, as exercise also protects against diabetes, obesity, and cardiovascular disease, which all limit healthful aging.  相似文献   

9.
Prohibitins are ubiquitous, abundant proteins found in a wide range of organisms and that have a high degree of sequence conservation. In yeast it has previously been demonstrated that prohibitin proteins form a complex and are involved in maintaining the morphological and functional integrity of mitochondria. We have used a colony-sectoring assay as a screen for mutants that are dependent upon the presence of functional Phb2p in the cell. Two classes of prohibitin dependent mutation (pbd1 and pbd2) were isolated and characterised. The effect of these mutations on replicative lifespan was determined, demonstrating that the pbd1 mutant slightly extended lifespan, whereas in contrast, the pbd2 mutation resulted in a shortening in both the mean- and the maximum-lifespan. The pbd1 mutation was also found to reduce chronological lifespan. Reducing the expression of the PHB2 gene in the pbd mutants was found to retard the rate of growth and to affect replicative lifespan. As the two mutants behave in a different manner they probably affect different aspects of prohibitin function.  相似文献   

10.
11.
We studied the chronological lifespan of glucose‐grown Saccharomyces cerevisiae in relation to the function of intact peroxisomes. We analyzed four different peroxisome‐deficient (pex) phenotypes. These included Δpex3 cells that lack peroxisomal membranes and in which all peroxisomal proteins are mislocalized together with Δpex6 in which all matrix proteins are mislocalized to the cytosol, whereas membrane proteins are still correctly sorted to peroxisomal ghosts. In addition, we analyzed two mutants in which the peroxisomal location of the β‐oxidation machinery is in part disturbed. We analyzed Δpex7 cells that contain virtually normal peroxisomes, except that all matrix proteins that contain a peroxisomal targeting signal type 2 (PTS2, also including thiolase), are mislocalized to the cytosol. In Δpex5 cells, peroxisomes only contain matrix proteins with a PTS2 in conjunction with all proteins containing a peroxisomal targeting signal type 1 (PTS1, including all β‐oxidation enzymes except thiolase) are mislocalized to the cytosol. We show that intact peroxisomes are an important factor in yeast chronological aging because all pex mutants showed a reduced chronological lifespan. The strongest reduction was observed in Δpex5 cells. Our data indicate that this is related to the complete inactivation of the peroxisomal β‐oxidation pathway in these cells due to the mislocalization of thiolase. Our studies suggest that during chronological aging, peroxisomal β‐oxidation contributes to energy generation by the oxidation of fatty acids that are released by degradation of storage materials and recycled cellular components during carbon starvation conditions.  相似文献   

12.
Insulin/IGF signaling (IIS) regulates essential processes including development, metabolism, and aging. The Drosophila genome encodes eight insulin/IGF‐like peptide (dilp) paralogs, including tandem‐encoded dilp1 and dilp2. Many reports show that longevity is increased by manipulations that decrease DILP2 levels. It has been shown that dilp1 is expressed primarily in pupal stages, but also during adult reproductive diapause. Here, we find that dilp1 is also highly expressed in adult dilp2 mutants under nondiapause conditions. The inverse expression of dilp1 and dilp2 suggests these genes interact to regulate aging. Here, we study dilp1 and dilp2 single and double mutants to describe epistatic and synergistic interactions affecting longevity, metabolism, and adipokinetic hormone (AKH), the functional homolog of glucagon. Mutants of dilp2 extend lifespan and increase Akh mRNA and protein in a dilp1‐dependent manner. Loss of dilp1 alone has no impact on these traits, whereas transgene expression of dilp1 increases lifespan in dilp1 ? dilp2 double mutants. On the other hand, dilp1 and dilp2 redundantly or synergistically interact to control circulating sugar, starvation resistance, and compensatory dilp5 expression. These interactions do not correlate with patterns for how dilp1 and dilp2 affect longevity and AKH. Thus, repression or loss of dilp2 slows aging because its depletion induces dilp1, which acts as a pro‐longevity factor. Likewise, dilp2 regulates Akh through epistatic interaction with dilp1. Akh and glycogen affect aging in Caenorhabditis elegans and Drosophila. Our data suggest that dilp2 modulates lifespan in part by regulating Akh, and by repressing dilp1, which acts as a pro‐longevity insulin‐like peptide.  相似文献   

13.
Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose that DR activates TRX-1 in ASJ neurons during aging, which in turn triggers TRX-1-dependent mechanisms to extend adult lifespan in the worm.  相似文献   

14.
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX‐1, RBR‐2, LSD‐1, and T26A5.5. Interestingly, UTX‐1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx‐1 knockdown and heterozygous mutation of utx‐1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX‐1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin‐FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX‐1 as a novel regulator of worm lifespan in somatic cells.  相似文献   

15.
Dietary restriction (DR) is the most universal intervention known to extend animal lifespan. DR also prevents tumor development in mammals, and this effect requires the tumor suppressor PTEN. However, the metabolic and cellular processes that underly the beneficial effects of DR are poorly understood. We identified slcf‐1 in an RNAi screen for genes that extend Caenorhabditis elegans lifespan in a PTEN/daf‐18‐dependent manner. We showed that slcf‐1 mutation, which increases average lifespan by 40%, mimics DR in worms fed ad libitum. An NMR‐based metabolomic characterization of slcf‐1 mutants revealed lower lipid levels compared to wild‐type animals, as expected for dietary‐restricted animals, but also higher pyruvate content. Epistasis experiments and metabolic measurements support a model in which the long lifespan of slcf‐1 mutants relies on increased mitochondrial pyruvate metabolism coupled to an adaptive response to oxidative stress. This response requires DAF‐18/PTEN and the previously identified DR effectors PHA‐4/FOXA, HSF‐1/HSF1, SIR‐2.1/SIRT‐1, and AMPK/AAK‐2. Overall, our data show that pyruvate homeostasis plays a central role in lifespan control in C. elegans and that the beneficial effects of DR results from a hormetic mechanism involving the mitochondria. Analysis of the SLCF‐1 protein sequence predicts that slcf‐1 encodes a plasma membrane transporter belonging to the conserved monocarboxylate transporter family. These findings suggest that inhibition of this transporter homolog in mammals might also promote a DR response.  相似文献   

16.
Resveratrol (RSV) extends the lifespan of various organisms through activation of sirtuin. However, whether RSV‐mediated longevity is entirely dependent upon sirtuin is still controversial. Thus, understanding additional mechanisms concerning the genetic requirements for the biological activity of RSV needs to be clarified to utilize the beneficial effects of RSV. In this study using Caenorhabditis elegans as a model system, we found that MPK‐1 (an ERK homolog) signaling is necessarily required for RSV‐mediated longevity of sir‐2.1/sirtuin mutants as well as for wild‐type worms. We demonstrated that MPK‐1 contributes to RSV‐mediated longevity through nuclear accumulation of SKN‐1 in a SIR‐2.1/DAF‐16 pathway‐independent manner. The positive effect of RSV in regulating lifespan was completely abolished by RNA interference against mpk‐1 in the sir‐2.1 and daf‐16 mutants, strongly indicating that the MPK‐1/SKN‐1 pathway is involved in RSV‐mediated longevity, independently of SIR‐2.1/DAF‐16. We additionally found that RSV protected worms from oxidative stress via MPK‐1. In addition to organismal aging, RSV prevented the age‐associated loss of mitotic germ cells, brood size, and reproductive span through MPK‐1 in C. elegans germline. Therefore, our findings not only provide new mechanistic insight into the controversial effects of RSV on organismal longevity, but additionally have important implications in utilizing RSV to improve the outcome of aging‐related diseases.  相似文献   

17.
18.
In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported.  相似文献   

19.
In Caenorhabditis elegans, longevity is increased by a partial loss‐of‐function mutation in the mitochondrial complex III subunit gene isp‐1. Longevity is also increased by RNAi against the expression of a variety of mitochondrial respiratory chain genes, including isp‐1, but it is unknown whether the isp‐1(qm150) mutation and the RNAi treatments trigger the same underlying mechanisms of longevity. We have identified nuo‐6(qm200), a mutation in a conserved subunit of mitochondrial complex I (NUDFB4). The mutation reduces the function of complex I and, like isp‐1(qm150), results in low oxygen consumption, slow growth, slow behavior, and increased lifespan. We have compared the phenotypes of nuo‐6(qm200) to those of nuo‐6(RNAi) and found them to be distinct in crucial ways, including patterns of growth and fertility, behavioral rates, oxygen consumption, ATP levels, autophagy, and resistance to paraquat, as well as expression of superoxide dismutases, mitochondrial heat‐shock proteins, and other gene expression markers. RNAi treatments appear to generate a stress and autophagy response, while the genomic mutation alters electron transport and reactive oxygen species metabolism. For many phenotypes, we also compared isp‐1(qm150) to isp‐1(RNAi) and found the same pattern of differences. Most importantly, we found that, while the lifespan of nuo‐6, isp‐1 double mutants is not greater than that of the single mutants, the lifespan increase induced by nuo‐6(RNAi) is fully additive to that induced by isp‐1(qm150), and the increase induced by isp‐1(RNAi) is fully additive to that induced by nuo‐6(qm200). Our results demonstrate that distinct and separable aspects of mitochondrial biology affect lifespan independently.  相似文献   

20.
Pathologic and physiologic factors acting on the heart can produce consistent pressure changes, volume overload, or increased cardiac output. These changes may then lead to cardiac remodeling, ultimately resulting in cardiac hypertrophy. Exercise can also induce hypertrophy, primarily physiologic in nature. To determine the mechanisms responsible for each type of remodeling, it is important to examine the heart at the functional unit, the cardiomyocyte. Tests of individual cardiomyocyte function in vitro provide a deeper understanding of the changes occurring within the heart during hypertrophy. Examination of cardiomyocyte function during exercise primarily follows one of two pathways: the addition of hypertrophic inducing agents in vitro to normal cardiomyocytes, or the use of trained animal models and isolating cells following the development of hypertrophy in vivo. Due to the short lifespan of adult cardiomyocytes, a proportionately scant amount of research exists involving the direct stimulation of cells in vitro to induce hypertrophy. These attempts provide the only current evidence, as it is difficult to gather extensive data demonstrating cell growth as a result of in vitro physical stimulation. Researchers have created ways to combine skeletal myocytes with cardiomyocytes to produce functional muscle cells used to repair pathologic heart tissue, but continue to struggle with the short lifespan of these cells. While there have been promising findings regarding the mechanisms that surround cardiac hypertrophy in vitro, the translation of in vitro findings to in vivo function is not consistent. Therefore, the focus of this review is to highlight recent studies that have investigated the effect of exercise on the heart, both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号