首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral ischemia/reperfusion (I/R) typically occurs after mechanical thrombectomy to treat ischemic stroke, generation of reactive oxygen species (ROS) after reperfusion may result in neuronal insult, ultimately leading to disability and death. Regulated in development and DNA damage responses 1 (REDD1) is a conserved stress response protein under various pathogenic conditions. Recent research confirms the controversial role of REDD1 in injury processes. Nevertheless, the role of REDD1 in cerebral I/R remains poorly defined. In the current study, increased expression of REDD1 was observed in neurons exposed to simulated I/R via oxygen glucose deprivation/reoxygenation (OGD/R) treatment. Knockdown of REDD1 enhanced OGD/R-inhibited cell viability, but suppressed lactate dehydrogenase (LDH) release in neurons upon OGD/R. Simultaneously, suppression of REDD1 also antagonized OGD/R-evoked cell apoptosis, Bax expression, and caspase-3 activity. Intriguingly, REDD1 depression abrogated neuronal oxidative stress under OGD/R condition by suppressing ROS, MDA generation, and increasing antioxidant SOD levels. Further mechanism analysis corroborated the excessive activation of autophagy in neurons upon OGD/R with increased expression of autophagy-related LC3 and Beclin-1, but decreased autophagy substrate p62 expression. Notably, REDD1 inhibition reversed OGD/R-triggered excessive neuronal autophagy. More importantly, depression of REDD1 also elevated the expression of p-mTOR. Preconditioning with mTOR inhibitor rapamycin engendered not only a reduction in mTOR activation, but also a reactivation of autophagy in REDD1 knockdown-neurons upon OGD/R. In addition, blocking the mTOR pathway muted the protective roles of REDD1 inhibition against OGD/R-induced neuron injury and oxidative stress. Together these data suggested that REDD1 may regulate I/R-induced oxidative stress injury in neurons by mediating mTOR-autophagy signaling, supporting a promising therapeutic strategy against brain ischemic diseases.  相似文献   

2.
Guanine derivates have been implicated in many relevant extracellular roles, such as modulation of glutamate transmission, protecting neurons against excitotoxic damage. Guanine derivatives are spontaneously released to the extracellular space from cultured astrocytes during oxygen-glucose deprivation (OGD) and may act as trophic factors, glutamate receptors blockers or glutamate transport modulators, thus promoting neuroprotection. The aim of this study was to evaluate the mechanisms involved in the neuroprotective role of the nucleoside guanosine in rat hippocampal slices submitted to OGD, identifying a putative extracellular binding site and the intracellular signaling pathways related to guanosine-induced neuroprotection. Cell damage to hippocampal slices submitted to 15 min of OGD followed by 2 h of reperfusion was decreased by the addition of guanosine (100 microM) or guanosine-5'-monophosphate (GMP, 100 microM). The neuroprotective effect of guanosine was not altered by the addition of adenosine receptor antagonists, nucleosides transport inhibitor, glutamate receptor antagonists, glutamate transport inhibitors, and a non-selective Na(+) and Ca(2+) channel blocker. However, in a Ca(2+)-free medium (by adding EGTA), guanosine was ineffective. Nifedipine (a Ca(2+) channel blocker) increased the neuroprotective effect of guanosine and 4-aminopyridine, a K(+) channel blocker, reversed the neuroprotective effect of guanosine. Evaluation of the intracellular signaling pathways associated with guanosine-induced neuroprotection showed the involvement of PKA, PKC, MEK and PI-3 K pathways, but not CaMKII. Therefore, this study shows guanosine is acting via K(+) channels activation, depending on extracellular Ca(2+) levels and via modulation of the PKA, PKC, MEK and/or PI-3 K pathways.  相似文献   

3.
Oxidative stress and mitochondrial dysfunction induced by metabolic insults are both hallmarks of various neurological disorders, whereby neuronal cells are severely affected by decreased glucose supply to the brain. Likely injured, astrocytes are important for neuronal homeostasis and therapeutic strategies should be directed towards improving astrocytic functions to improve brain's outcome. In the present study, we aimed to assess the actions of raloxifene, a selective estrogen receptor modulator in astrocytic cells under glucose deprivation. Our findings indicated that pretreatment with 1 µM raloxifene results in an increase in cell viability and attenuated nuclei fragmentation. Raloxifene's actions also rely on the reduction of oxidative stress and preservation of mitochondrial function in glucose-deprived astrocytic cells, suggesting the possible direct effects of this compound on mitochondria. In conclusion, our results demonstrate that raloxifene's protective actions might be mediated in part by astrocytes in the setting of a metabolic insult.  相似文献   

4.
Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 μM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD. GUO also exhibited anti‐inflammatory actions as inhibition of nuclear factor kappa B activation and reduction of inducible nitric oxide synthase induction induced by OGD. These GUO neuroprotective effects were mediated by adenosine A1 receptor, phosphatidylinositol‐3 kinase and MAPK/ERK. Furthermore, GUO recovered the impairment of glutamate uptake caused by OGD, an effect that occurred via a Pertussis toxin‐sensitive G‐protein‐coupled signaling, blockade of adenosine A2A receptors (A2AR), but not via A1 receptor. The modulation of glutamate uptake by GUO also involved MAPK/ERK activation. In conclusion, GUO, by modulating adenosine receptor function and activating MAPK/ERK, affords neuroprotection of hippocampal slices subjected to OGD by a mechanism that implicates the following: (i) prevention of mitochondrial membrane depolarization, (ii) reduction of oxidative stress, (iii) regulation of inflammation by inhibition of nuclear factor kappa B and inducible nitric oxide synthase, and (iv) promoting glutamate uptake.  相似文献   

5.
6.
Docosahexaenoic acid (DHA) is important for central nervous system function during pathological states such as ischemia. DHA reduces neuronal injury in experimental brain ischemia; however, the underlying mechanisms are not well understood. In the present study, we investigated the effects of DHA on acute hippocampal slices subjected to experimental ischemia by transient oxygen and glucose deprivation (OGD) and re-oxygenation and the possible involvement of purinergic receptors as the mechanism underlying DHA-mediated neuroprotection. We observed that cellular viability reduction induced by experimental ischemia as well as cell damage and thiobarbituric acid reactive substances (TBARS) production induced by glutamate (10 mM) were prevented by hippocampal slices pretreated with DHA (5 μM). However, glutamate uptake reduction induced by OGD and re-oxygenation was not prevented by DHA. The beneficial effect of DHA against cellular viability reduction induced by OGD and re-oxygenation was blocked with PPADS (3 μM), a nonselective P2X1–5 receptor antagonist as well as with a combination of TNP-APT (100 nM) plus brilliant blue (100 nM), which blocked P2X1, P2X3, P2X2/3, and P2X7 receptors, respectively. Moreover, adenosine receptors blockade with A1 receptor antagonist DPCPX (100 nM) or with A2B receptor antagonist alloxazine (100 nM) inhibited DHA-mediated neuroprotection. The addition of an A2A receptor antagonist ZM241385 (50 nM), or A3 receptor antagonist VUF5574 (1 μM) was ineffective. Taken together, our results indicated that neuroprotective actions of DHA may depend on P2X, A1, and A2B purinergic receptors activation. Our results reinforce the notion that dietary DHA may act as a local purinergic modulator in order to prevent neurodegenerative diseases.  相似文献   

7.
Oxygen–glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders.  相似文献   

8.
Dedicator of cytokinesis 3 (Dock3), a new member of the guanine nucleotide exchange factors for the small GTPase Rac1, promotes axon regeneration following optic nerve injury. In the present study, we found that Dock3 directly binds to the intracellular C-terminus domain of NR2B, an N-methyl-𝒟-aspartate (NMDA) receptor subunit. In transgenic mice overexpressing Dock3 (Dock3 Tg), NR2B expression in the retina was significantly decreased and NMDA-induced retinal degeneration was ameliorated. In addition, overexpression of Dock3 protected retinal ganglion cells (RGCs) from oxidative stress. We previously reported that glutamate/aspartate transporter (GLAST) is a major glutamate transporter in the retina, and RGC degeneration due to glutamate neurotoxicity and oxidative stress is observed in GLAST-deficient (KO) mice. In GLAST KO mice, the NR2B phosphorylation rate in the retina was significantly higher compared with Dock3 Tg:GLAST KO mice. Consistently, glaucomatous retinal degeneration was significantly improved in GLAST KO:Dock3 Tg mice compared with GLAST KO mice. These results suggest that Dock3 overexpression prevents glaucomatous retinal degeneration by suppressing both NR2B-mediated glutamate neurotoxicity and oxidative stress, and identifies Dock3 signaling as a potential therapeutic target for both neuroprotection and axonal regeneration.  相似文献   

9.
Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) is considered as a putative therapeutic agent against stroke. Since BDNF role on oxidative stress is uncertain, we have studied this role in a rat brain slice ischemia model, which allows BDNF reaching the neural parenchyma. Hippocampal and cerebral cortex slices were subjected to oxygen and glucose deprivation (OGD) and then returned to normoxic conditions (reperfusion-like, RL). OGD/RL increased a number of parameters mirroring oxidative stress in the hippocampus that were reduced by the BDNF presence. BDNF also reduced the OGD/RL-increased activity in a number of antioxidant enzymes in the hippocampus but no effects were observed in the cerebral cortex. In general, we conclude that alleviation of oxidative stress by BDNF in OGD/RL-exposed slices relies on decreasing cPLA2 activity, rather than modifying antioxidant enzyme activities. Moreover, a role for the oxidative stress in the differential ischemic vulnerability of cerebral cortex and hippocampus is also supported.  相似文献   

11.
Nephrotoxicity is an adverse side effect of methotrexate (MTX) chemotherapy. The present study verifies whether melatonin, an endogenous antioxidant prevents MTX‐induced renal damage. Adult rats were administered 7 mg/kg body weight MTX intraperitoneally for 3 days. In the melatonin pretreated rats, 40 mg/ kg body weight melatonin was administered daily intraperitoneally 1 h before the administration of MTX. The rats were killed 12 h after the final dose of MTX/vehicle. The kidneys were used for light microscopic and biochemical studies. The markers of oxidative stress were measured along with the activities of the antioxidant enzymes and myeloperoxidase activity in the kidney homogenates. Pretreatment with melatonin reduced MTX induced renal damage both histologically and biochemically as revealed by normal plasma creatinine levels. Melatonin pretreatment reduced MTX induced oxidative stress, alteration in the activity of antioxidant enzymes as well as elevation in myeloperoxidase activity. The results suggest that melatonin has the potential to reduce MTX induced oxidative stress, neutrophil infiltration as well as renal damage. As melatonin is an endogenous antioxidant and is non‐toxic even in high doses it is suggested that melatonin may be beneficial in minimizing MTX induced renal damage in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

Exercise-induced changes in p66Shc-dependent signaling pathway are still not fully understood. The p66Shc protein is one of the key players in cell signaling, particularly in response to oxidative stress. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the phosphorylation of p66Shc as well as the induction of mitochondrial and cellular oxidative stress in rat hearts.

Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their hearts were removed immediately for experiments.

The exercise protocol caused increased levels of the following oxidative stress parameters in cardiac cells: DNA damage, protein carbonyls, and lipid dienes. There was also increased phosphorylation of p66Shc without any alterations in Akt and extracellular signal-regulated kinases. Changes in the ferritin L levels and the L to H subunit ratio were also observed in the exercised hearts compared with the control hearts. Despite increased phosphorylation of p66Shc, no significant increase was observed in either mitochondrial H2O2 release or mitochondrial oxidative stress markers. Regardless of the changes in phosphorylation of p66Shc, the antioxidant enzyme activities (superoxide dismutase and catalase) and anti-apoptotic (Bcl2), and pro-apoptotic (Bax) protein levels were not affected by prolonged swimming. Further studies are required to investigate whether p66Shc phosphorylation is beneficial or detrimental to cardiac cells after exercise cessation.  相似文献   

13.
Background: Cardiovascular disease is the main cause of morbidity and mortality in the world and oxidative stress has been implicated in the pathogenesis. Cardiac rehabilitation in patients with coronary artery disease submitted to coronary artery bypass grafting may prevent cardiovascular events probably through the attenuation of oxidative stress. The aim of this study was to evaluate the benefits of a cardiac rehabilitation program in the control of the systemic oxidative stress.

Methods: The studied population consisted of 40 patients, with chronic stable coronary artery disease submitted to coronary artery bypass grafting, who attended a cardiac rehabilitation program. Biomarkers of oxidative stress were evaluated in the blood of these patients at different moments.

Results: After the onset of cardiac rehabilitation, there was a significant and progressive decrease in thiobarbituric acid reactive substances levels and protein carbonyls, an initial increase and subsequent decrease in superoxide dismutase, catalase and glutathione peroxidase activities. Also, a progressive increase of uric acid, while ferric reducing antioxidant power levels increased only at the end of the cardiac rehabilitation and a tendency to increase of glutathione contents.

Conclusions: The results suggest that regular exercise through a cardiac rehabilitation program can attenuate oxidative stress in chronic coronary artery disease patients submitted to coronary artery bypass grafting.  相似文献   


14.
1. Guanosine-5-monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).2. Cellular injury was evaluated by MTT reduction, lactate dehydrogenase (LDH) release assay, and measurement of intracellular ATP levels.3. In slices submitted to ischemic conditions, 1 mM GMP partially prevented the decrease in cell viability induced by glucose and oxygen deprivation and the addition of KA.4. KA or N-methyl-D-aspartate (NMDA) receptor antagonists, -D-glutamylamino-methylsulfonate (GAMS) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801, 20 M) also prevented toxicity in hippocampal slices under ischemic conditions, respectively.5. The association of GMP with GAMS or MK-801 did not induce additional protection than that observed with GMP or that classical glutamate receptor antagonists alone.6. GMP, probably by interacting with ionotropic glutamate receptors, attenuated the damage caused by glucose and oxygen deprivation in hippocampal slices. This neuroprotective action of GMP in this model of excitotoxicity is of outstanding interest in the search for effective therapies against ischemic injury.  相似文献   

15.
We investigated the relative contribution of COX-1 and/or COX-2 to oxidative damage, prostaglandin E2 (PGE2) production and hippocampal CA1 neuronal loss in a model of 5 min transient global cerebral ischemia in gerbils. Our results revealed a biphasic and significant increase in PGE2 levels after 2 and 24-48 h of reperfusion. The late increase in PGE2 levels (24 h) was more potently reduced by the highly selective COX-2 inhibitor rofecoxib (20 mg/kg) relative to the COX-1 inhibitor valeryl salicylate (20 mg/kg). The delayed rise in COX catalytic activity preceded the onset of histopathological changes in the CA1 subfield of the hippocampus. Post-ischemia treatment with rofecoxib (starting 6 h after restoration of blood flow) significantly reduced measures of oxidative damage (glutathione depletion and lipid peroxidation) seen at 48 h after the initial ischemic episode, indicating that the late increase in COX-2 activity is involved in the delayed occurrence of oxidative damage in the hippocampus after global ischemia. Interestingly, either selective inhibition of COX-2 with rofecoxib or inhibition of COX-1 with valeryl salicylate significantly increased the number of healthy neurons in the hippocampal CA1 sector even when the treatment began 6 h after ischemia. These results provide the first evidence that both COX isoforms are involved in the progression of neuronal damage following global cerebral ischemia, and have important implications for the potential therapeutic use of COX inhibitors in cerebral ischemia.  相似文献   

16.
The effects of brain ischemia on the maximum binding capacity (Bmax) and affinity (Kd) of A1 receptors were studied in the rat cerebral cortex, with an in vitro approach. The results were correlated with changes in 3H-adenosine release, studied under identical experimental conditions. Fifteen minutes of in vitro ‘ischemia’ (hypoxic, glucose-free medium) induced a significant increase in both Bmax (2398±132 fmol/mg protein, 151% of the control, P<0.05) and in Kd (2.43±0.12 nM, 161% of the control, P<0.01). At the same time, an increase in tritium efflux from [3H]-adenosine labeled cerebral cortex slices to 324% of the control was observed. A trend toward normalization was evident 5–15 min after ‘reoxygenation’ (restoring normal medium), but the binding parameters were still altered after 60 min (Bmax 2110±82 fmol/mg protein, Kd 2.26±0.14 nM, P<0.01 vs the corresponding control) as was adenosine release (196% of the control). These findings suggest that the increased availability of adenosine and its receptors may be a defense mechanism against ischemic injury, while the reduced affinity of A1 receptors, possibly due to desensitization, may be a sign of ischemia-induced cellular damage.  相似文献   

17.
Protein targeting to glycogen (PTG) is a ubiquitously expressed scaffolding protein that critically regulates glycogen levels in many tissues, including the liver, muscle and brain. However, its importance in transformed cells has yet to be explored in detail. Since recent studies have demonstrated an important role for glycogen metabolism in cancer cells, we decided to assess the effect of PTG levels on the ability of human hepatocellular carcinoma (HepG2) cells to respond to metabolic stress. Although PTG expression did not significantly affect the proliferation of HepG2 cells under normal culture conditions, we determined that PTG plays an important role during glucose deprivation. Overexpression of PTG protected cells from cell death in the absence of glucose, whereas knocking down PTG further promoted cytotoxicity, as measured by the release of lactate dehydrogenase (LDH) into the media. Additionally, we demonstrated that PTG attenuates glucose deprivation induced haeme oxygenase-1 (HO-1) expression, suggesting that PTG protects against glucose deprivation-induced oxidative stress. Indeed, treating cells with the antioxidant N-acetyl cysteine (NAC) rescued cells from cytotoxicity caused by glucose deprivation. Finally, we showed that loss of PTG resulted in enhanced autophagy. In control cells, glucose deprivation suppressed autophagy as determined by the increase in the levels of p62, an autophagy substrate. However, in knockdown cells, this suppression was relieved. Blockade of autophagy also attenuated cytotoxicity from glucose deprivation in PTG knockdown cells. Taken together, our findings identify a novel role for PTG in protecting hepatocellular carcinoma cells from metabolic stress, in part by regulating oxidative stress and autophagy.  相似文献   

18.

[Purpose]

The purpose of this study was to investigate the effect of unaccustomed downhill running on muscle damage, oxidative stress, and leukocyte apoptosis.

[Methods]

Thirteen moderately trained male subjects performed three 40 min treadmill runs at ~70% VO2max on separate days: a level run (L) followed by two downhill runs (DH1 and DH2). Blood samples were taken at rest (PRE) and immediately (POST), 2 h, 24 h, and 48 h after each run. Data were analyzed using 2-way repeated measures ANOVA with post hoc Tukey tests.

[Results]

Creatine kinase (CK) activity and oxidative stress level were significantly elevated at 24 h and 48 h following DH1 (P < 0.05). The level of oxidative stress at the POST measurement following DH1 and DH2 was greater than PRE. The rate of leukocyte apoptosis was significantly increased at the POST measurement following all three runs, and remained elevated for up to 48 h following DH1 (P < 0.01).

[Conclusion]

CK activity and oxidative stress were elevated following an acute bout of moderate intensity downhill running, resulting in a greater apoptotic response at 24 h and 48 h post-exercise in comparison with level grade running or a second downhill run. These elevations were blunted following DH2. Although the link between exercise-induced muscle damage and leukocyte apoptosis is currently unknown, the differential response to DH1 vs. L and DH2 indicates that it may be mediated by the elevation of oxidative stress.  相似文献   

19.
Exercise training has been used for treatment/prevention of many cardiovascular diseases, but the mechanisms need to be clarified. Thus, our aim was to compare oxidative stress parameters between rats submitted to a swimming training and sedentary rats (control). Twelve male rats were divided into two groups: control and exercise training. The exercise training had daily 1 h swimming sessions for 8 weeks and a load (5% of its body mass) was placed in rat's tail. Thereafter the animals were killed, aorta and heart were surgically removed and blood was collected. Body mass gain, thiobarbituric acid reactive species (TBARS), carbonyl content, total reactive antioxidant potential (TRAP), total antioxidant reactivity (TAR), superoxide dismutase (SOD) activity and catalase (CAT) activity were evaluted. The trained rats showed a lower body mass gain and no modifications on heart. An increased SOD activity was observed on aorta after the training, but no changes were seen for CAT activity, which led to an increased SOD/CAT ratio. The arterial TBARS was also increased for trained rats. The decrease in TRAP in exercise training was the single modification on plasma. Our findings suggest that the increased SOD activity could play a role in vascular adaptations to exercise training. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Cisplatin is one of the most widely used chemotherapeutic anti-cancer drugs that is associated with multiple systemic toxicities limiting its use. The present study aimed to evaluate the hepato-protective effect of hesperidin against cisplatin-induced toxicity. Thirty-two adult male albino rats were equally split into four groups, the first group served as control received normal saline, the second group (CIS) received a single intraperitoneal dose of cisplatin (7.5 mg/kg bw) on the 22nd day of the experiment, the third group (HES) treated once daily with hesperidin (200 mg/kg bw, orally) for 21 days, and the last group (HES + CIS) pretreated once daily with hesperidin followed by a single intraperitoneal dose of cisplatin. Twenty-four hours later, samples were collected for further investigations. CIS-intoxication resulted in a significant decrease in the erythrogram along with thrombocytopenia leukopenia, and lymphopenia. Furthermore, CIS administration significantly elevated serum activity of liver enzymes, total, and indirect bilirubin as well serum glucose, total cholesterol, and triglycerides levels, meanwhile serum total protein, and globulin levels were significantly reduced. The hepatic MDA was markedly elevated with a concomitant decline in the hepatic antioxidant enzymes and severe alterations in the hepatic tissue architecture in CIS-intoxicated rats. Additionally, CIS-induced overexpression of hepatic Bax, caspase-3, and TNF-α, with no effect on hepatic expression of IL-10. Interestingly, HES pretreatment improved the CIS-induced hemato-biochemical, molecular and histopathological alterations. In conclusion, hesperidin hepato-protective effects against CIS might be mediated by its antioxidant, anti-inflammatory, and anti-apoptotic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号