首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The five greatest sublethal injuries were selected from a collection of more than 12,000 predominantly Mesozoic injured or otherwise pathological ammonoids. The loss of shell mass from these survived injuries was calculated and compared with comparable tolerances in the recent Nautilus . These ammonoids tolerated a shell loss up to four times greater than in Nautilus . The maximum tolerated shell loss indicates an unexpected buoyancy compensation mechanism. The buoyancy of the selected specimens was calculated. The results show that the buoyancy of all the observed ammonoid shells was positive. In order to maintain neutral buoyancy after injury, these ammonoids had to fill the phragmocone with a volume of mass. Nautilus compensated a maximum mass loss requiring a liquid refill of 3% of the cameral capacity, the ammonoids compensated a maximum of observed mass loss requiring a liquid refill of more than 10% of cameral capacity. The ratio of chamber volume/siphuncular surface area in the ammonoid Lithacoceras is 0.043, indicating that the relative area of the siphuncular epithelium in Lithacoceras is significantly higher when compared with a ratio of 0.12-0.14 in the adult Nautilus . The phragmocone in ammonoids offered the ability of a much more active buoyancy regulation than in Nautilus .  相似文献   

2.
A 3D model of the Middle Jurassic ammonoid Normannites with an apertural modification from Thürnen, Switzerland, was constructed using physical–optical tomography. It was tested to determine whether the formation of the apertural modification affected shell orientation, to estimate buoyancy regulation and to reconstruct the mode of life of this ammonoid. No drastic postural changes occurred between the 3D models that excluded and included lappets, suggesting that the lappets were not formed to change the syn vivo shell orientation and, in turn, locomotion. We speculate that these adult shell modifications served to protect the soft parts during the reproduction period. Buoyancy calculations based on the model assume that ammonoids were positively buoyant when the phragmocone was devoid of liquid. When 31% of the entire phragmocone was filled with liquid, the living animal would have reached neutral buoyancy in contrast to 27% of cameral liquid filling when the weight of the aptychi is included. Provided that smaller ammonoids had more cameral liquid than bigger ammonoids, such as the modern Nautilus, Normannites examined in this study would have been able to maintain neutral buoyancy and might have had a demersal, nektobenthic or nektonic habitat somewhere in the water column.  相似文献   

3.
The interpretation of the function of the ammonoid phragmocone as a buoyancy device is now widely accepted among ammonoid researchers. During the 20th century, several theoretical models were proposed for the role of the chambered shell (phragmocone); accordingly, the phragmocone had hydrostatic properties, which enabled it to attain neutral buoyancy, presuming it was partially filled with gas. With new three‐dimensional reconstructions of ammonoid shells, we are now able to test these hypothetical models using empirical volume data of actual ammonoid shells. We investigated three Palaeozoic ammonoids (Devonian and Carboniferous), namely Fidelites clariondi, Diallagites lenticulifer and Goniatites multiliratus, to reconstruct their hydrostatic properties, their syn vivo shell orientation and their buoyancy. According to our models, measurements and calculations, these specimens had aperture orientations of 19°, 64° and 125° during their lives. Although none of our results coincide with the aperture orientation of the living Nautilus, they do verify the predictions for shell orientations based on published theoretical models. Our calculations also show that the shorter the body chamber, the poorer was the hydrodynamic stability of the animal. This finding corroborates the results of theoretical models from the 1990s. With these results, which are based on actual specimens, we favour the rejection of hypotheses suggesting a purely benthonic mode of life of ammonoids. Additionally, it is now possible to assess hydrodynamic properties of the shells through ontogeny and phylogeny, leading to insights to validate theoretical modes of life and habitat through the animal's life.  相似文献   

4.
Narrow groove-like excavations on ammonoid and coiled nautiloid shells are rare in Upper Carboniferous units from Texas, USA. The morphological characteristics of the excavation grooves typically are confined to the ventral and ventrolateral parts of the outer whorl of the shell, are narrower than the length, and have irregular edges where small segments or chips of shells have been removed. Analysis of these features reveals a statistically significant preferential occurrence on ammonoids (1.195% of ca. 3515 specimens) as compared to coiled nautiloids (0.506% of ca. 2965 specimens). The ammonoids typically have longer excavations that penetrate the phragmocone more frequently than those observed in the coiled nautiloids. The groove-like excavations were probably formed by the removal and peeling of shell material by one or more predatory or scavenging arthropods to obtain organic material (tissue and membranes) within the ammonoid and nautiloid body chambers and phragmocones. The excavations probably occurred when the cephalopod was alive (i.e., the cause of death) or shortly after the cephalopod's death. There is no evidence that the excavations are related to sheltering by the excavating organism.  相似文献   

5.
6.
The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.  相似文献   

7.
Field and flume experiments with modern Nautilus pompilius establish two prerequisites to recognize in situ preservation of fossil cephalopod shells (soft parts were within body chamber in situ at the time of fossilization): occurrence of the upper jaw within the body chamber and the position of jaws within the body chamber. Morphology of shells and jaws in modern and fossil nautiloids is so similar that these prerequisites can be applied for fossil nautiloids and provide implications for ammonoids. The upper jaws of Nautilus start to move at a water velocity of > 0.2 m/s, when the shells are reoriented with the aperture downstream; jaws are therefore unlikely to be secondarily deposited near the shell aperture by bottom currents. The lower jaws, moved at the velocity of > 0.1 m/s, can be deposited around the shell aperture by weak current (0.1–0.2 m/s in velocity), but never enter the inside of body chamber. Neither jaw is likely to be separately and selectively displaced from the inside of the body chamber through scavenging of the soft parts by burrowing infaunal animals. An upper jaw preserved inside the body chamber, together with a lower jaw, is thus a reliable indicator of in situ preservation; a sole lower jaw preserved around the shell aperture is likely to be secondarily deposited. Sedimentary structures inferring rapid burial events and jaw size are useful as additional evidence. Smaller jaws were more likely to be displaced from the body chamber by scavenging by infaunal animals after in situ burial, so that smaller jaws preserved within the body chamber suggest less scavenging. These findings are crucial to interpreting the taphonomic history and palaeo-ecology of fossil cephalopods.  相似文献   

8.
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.  相似文献   

9.
程立人 《古生物学报》2000,39(3):396-402
奇壁角石科(Allotrioceratidae)分子在我华北东部属首次发现。它产于马家沟组下部。界于Deformon-ceras-Peripatoceras与Polydesmia-Wutinoceras-Eosiotelus组合带之间偏下。奇壁角石科是Flower,R.H.1995年创立的,至今科内已建立6属13种和3个相似种。但以往所描述标本绝大多数仅保存有部分内体管,对其它特征所知甚少。文中描  相似文献   

10.
Nautilus is not suitable as a model organism to infer biological functions, embryonic development, or mode of life in ammonoids. A brief review of the available morphological data is given and molecular data are added to discuss the usefulness of Spirula as a biological proxy for ammonoids. Indeed, there are many morphological hints indicating that Spirula could be a useful model organism for approaching the embryonic development of ammonoids. The molecular data seem to support this hypothesis. However, a universal model character of Spirula cannot be detected as, e.g., the mode of feeding probably differs between Spirula and ammonoids.  相似文献   

11.
Heteromorphs are ammonoids forming a conch with detached whorls (open coiling) or non-planispiral coiling. Such aberrant forms appeared convergently four times within this extinct group of cephalopods. Since Wiedmann's seminal paper in this journal, the palaeobiology of heteromorphs has advanced substantially. Combining direct evidence from their fossil record, indirect insights from phylogenetic bracketing, and physical as well as virtual models, we reach an improved understanding of heteromorph ammonoid palaeobiology. Their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction are discussed. Based on phylogenetic bracketing with nautiloids and coleoids, heteromorphs like other ammonoids had 10 arms, a well-developed brain, lens eyes, a buccal mass with a radula and a smaller upper as well as a larger lower jaw, and ammonia in their soft tissue. Heteromorphs likely lacked arm suckers, hooks, tentacles, a hood, and an ink sac. All Cretaceous heteromorphs share an aptychus-type lower jaw with a lamellar calcitic covering. Differences in radular tooth morphology and size in heteromorphs suggest a microphagous diet. Stomach contents of heteromorphs comprise planktic crustaceans, gastropods, and crinoids, suggesting a zooplanktic diet. Forms with a U-shaped body chamber (ancylocone) are regarded as suspension feeders, whereas orthoconic forms additionally might have consumed benthic prey. Heteromorphs could achieve near-neutral buoyancy regardless of conch shape or ontogeny. Orthoconic heteromorphs likely had a vertical orientation, whereas ancylocone heteromorphs had a near-horizontal aperture pointing upwards. Heteromorphs with a U-shaped body chamber are more stable hydrodynamically than modern Nautilus and were unable substantially to modify their orientation by active locomotion, i.e. they had no or limited access to benthic prey at adulthood. Pathologies reported for heteromorphs were likely inflicted by crustaceans, fish, marine reptiles, and other cephalopods. Pathologies on Ptychoceras corroborates an external shell and rejects the endocochleate hypothesis. Devonian, Triassic, and Jurassic heteromorphs had a preference for deep-subtidal to offshore facies but are rare in shallow-subtidal, slope, and bathyal facies. Early Cretaceous heteromorphs preferred deep-subtidal to bathyal facies. Late Cretaceous heteromorphs are common in shallow-subtidal to offshore facies. Oxygen isotope data suggest rapid growth and a demersal habitat for adult Discoscaphites and Baculites. A benthic embryonic stage, planktic hatchlings, and a habitat change after one whorl is proposed for Hoploscaphites. Carbon isotope data indicate that some Baculites lived throughout their lives at cold seeps. Adaptation to a planktic life habit potentially drove selection towards smaller hatchlings, implying high fecundity and an ecological role of the hatchlings as micro- and mesoplankton. The Chicxulub impact at the Cretaceous/Paleogene (K/Pg) boundary 66 million years ago is the likely trigger for the extinction of ammonoids. Ammonoids likely persisted after this event for 40–500 thousand years and are exclusively represented by heteromorphs. The ammonoid extinction is linked to their small hatchling sizes, planktotrophic diets, and higher metabolic rates than in nautilids, which survived the K/Pg mass extinction event.  相似文献   

12.
Nautiloids are the subject of speculation as to their threatened status arising from the impacts of targeted fishing for the ornamental shell market. Life history knowledge is essential to understand the susceptibility of this group to overfishing and to the instigation of management frameworks. This study provides a comprehensive insight into the life of Nautilus in the wild. At Osprey Reef from 1998–2008, trapping for Nautilus was conducted on 354 occasions, with 2460 individuals of one species, Nautilus pompilius, captured and 247 individuals recaptured. Baited remote underwater video systems (BRUVS) were deployed on 15 occasions and six remotely operated vehicle (ROV) dives from 100–800 m were conducted to record Nautilus presence and behavior. Maturity, sex and size data were recorded, while measurements of recaptured individuals allowed estimation of growth rates to maturity, and longevity beyond maturity. We found sexual dimorphism in size at maturity (males: 131.9±SD = 2.6 mm; females: 118.9±7.5 mm shell diameter) in a population dominated by mature individuals (58%). Mean growth rates of 15 immature recaptured animals were 0.061±0.023 mm day−1 resulting in an estimate of around 15.5 years to maturation. Recaptures of mature animals after five years provide evidence of a lifespan exceeding 20 years. Juvenile Nautilus pompilius feeding behavior was recorded for the first time within the same depth range (200–610 m) as adults. Our results provide strong evidence of a K-selected life history for Nautilus from a detailed study of a ‘closed’ wild population. In conjunction with population size and density estimates established for the Osprey Reef Nautilus, this work allows calculations for sustainable catch and provides mechanisms to extrapolate these findings to other extant nautiloid populations (Nautilus and Allonautilus spp.) throughout the Indo-Pacific.  相似文献   

13.
This study is the first to report a trend of predation intensity on scaphitid ammonoids from the Turonian to the Maastrichtian (Late Cretaceous) on the basis of analysis of ventral shell breakage in large samples from the US Western Interior Province. Analysis of 835 adult specimens revealed ventral shell breakage in 50 specimens. In most of the damaged specimens, the breakage occurred in a preferred position at the rear part of the body chamber. Ventral breakage is rare in the Turonian specimens, whereas it is common in the Campanian and Maastrichtian specimens. The shell diameter of adult scaphitid ammonoids tends to increase with time. The position of the breakage and the absence of repairs indicate that the ventral breakage resulted from lethal predation. Based on the incidence of breakage and the size and shape of the breaks, possible predators include fish, reptiles and cephalopods such as Placenticeras, Eutrephoceras and coleoids. Our statistical analysis of ventral shell breakage indicates that the incidence of lethal predation increased in conjunction with an increase in adult shell size, suggesting that the body size of the prey was an important factor in predator–prey interactions. In addition, the predatory damage is more extensive in larger adults.  相似文献   

14.
Ammonoids are a group of extinct mollusks belonging to the same class of the living genus Nautilus (cephalopoda). In both Nautili and ammonoids, the (usually planospiral) shell is divided into chambers separated by septa that, during their lifetime, are filled with gas at atmospheric pressure. The intersection of septa with the external shell generates a curve called the suture line, which in living and most fossil Nautili is fairly uncomplicated. In contrast, suture lines of ancient ammonoids were gently curved and during the evolution of the group became highly complex, in some cases so extensively frilled as to be considered as fractal curves. Numerous theories have been put forward to explain the complexity of suture ammonoid lines. Calculations presented here lend support to the hypothesis that complex suture lines aided in counteracting the effect of the external water pressure. Additionally, it is suggested that complex suture lines diminished shell shrinkage caused by water pressure, and thus aided in improving buoyancy. Understanding the reason for complex sutures in ammonoids represents an important issue in paleobiology with potential applications to the problem of the resistance of hollow mechanical structures subjected to high pressure.  相似文献   

15.
The cephalopod genus Nautilus is considered a “living fossil” with a contested number of extant and extinct species, and a benthic lifestyle that limits movement of animals between isolated seamounts and landmasses in the Indo‐Pacific. Nautiluses are fished for their shells, most heavily in the Philippines, and these fisheries have little monitoring or regulation. Here, we evaluate the hypothesis that multiple species of Nautilus (e.g., N. belauensis, N. repertus and N. stenomphalus) are in fact one species with a diverse phenotypic and geologic range. Using mitochondrial markers, we show that nautiluses from the Philippines, eastern Australia (Great Barrier Reef), Vanuatu, American Samoa, and Fiji fall into distinct geographical clades. For phylogenetic analysis of species complexes across the range of nautilus, we included sequences of Nautilus pompilius and other Nautilus species from GenBank from localities sampled in this study and others. We found that specimens from Western Australia cluster with samples from the Philippines, suggesting that interbreeding may be occurring between those locations, or that there is limited genetic drift due to large effective population sizes. Intriguingly, our data also show that nautilus identified in other studies as N. belauensis, N. stenomphalus, or N. repertus are likely N. pompilius displaying a diversity of morphological characters, suggesting that there is significant phenotypic plasticity within N. pompilius.  相似文献   

16.
The shell repair scars of modern Nautilus pompilius in the Philippines presumably due to sub‐lethal predatory attacks were examined throughout ontogeny ranging from hatching to maturity, revealing the higher risk of fatality in earlier ontogenetic stages. The examinations throughout ontogeny demonstrate that: (1) sub‐lethal predatory attacks by other organisms have no preferred position through ontogeny; (2) the sizes of shell repair scars are similar throughout ontogeny and, therefore, the width and length of shell repair scars relative to shell diameter decrease from hatching towards maturity; and (3) the proportion of sub‐lethal predatory attacks within 10 mm increments of shell diameter are similar irrespective of shell diameter or decrease approaching maturity. The numbers of the irregular, radiating, black shell repair scars, indicating injury to the soft parts at shell breakage, decrease at a diameter >80 mm and none were found at <56 mm in shell diameter. Furthermore, the rarity of juvenile trapping data might be related to the higher fatality from predatory attacks in earlier ontogenetic stages, providing crucial information for the conservation of N. pompilius.  相似文献   

17.
A series of initial shells ofNautilus pompilius was investigated for morphologic and isotopic evidence of the early ontogenetic development. Shell morphologic features, such as curvature of early shell, cancellate sculpture, suture and grouping of septa, as well as very early shell injuries, color banding and shell/egg dimensions, seem to indicate an interpretation of early ontogeny differing from that which is now generally accepted. The O18/O16 and C13/C12 ratios in the early shell and septa of twoNautilus specimens are given. Changes in the carbon isotope content are tentatively correlated with the end of the embryonic period and with environmental changes. Variations in the oxygen isotope content are in part ascribed to migrations from warm to cooler water after a certain stage of development. The size of the body chamber of the young animals can be determined by comparison of the isotope contents in outer shell and septa. Existing ideas concerning early ontogeny ofNautilus are critically discussed.  相似文献   

18.
Abstract:  The meaning of modifications in septal spacing that often coincide with maturity in extant Nautilus and fossil nautiloids, and also in ammonoids, remains controversial. In the Callovian nautilid species Paracenoceras marocense Miller and Collinson, 1952 , the extent of decrease in septal spacing and the exceptional number of approximated septa are correlated with an unusual positive ontogenetic allometry in whorl-width expansion. This allometric growth implies that the threshold weight of the animal, requiring the formation of a new chamber to maintain near-neutral buoyancy, was reached for an increasingly shorter angular length of shell added to the aperture. Thus, the available space for the newly forming chamber behind the advancing body was reduced accordingly. Ontogenetic modifications in septal spacing are linked to relative growth of the animal. The flexibility in the mechanisms of buoyancy regulation would be expected to have been a critical factor affecting the possible set of ontogenetic trajectories in chambered cephalopods and thus the realm of variation upon which selection could act.  相似文献   

19.
Mapes, R.H. & McComas, G.A. 2010: Septal implosion in Late Carboniferous coiled nautiloids from Ohio. Lethaia, 10.1111/j.1502–3931.2009.00213.x More than 200 relatively mature coiled nautiloid specimens, assigned to Metacoceras mcchesneyi, were recovered from an Upper Carboniferous shale in northeastern Ohio. Twenty‐seven undistorted specimens reveal that the septa in every specimen were collapsed and/or telescoped. This septal collapse without external shell distortion could only have been accomplished by limited implosion due to excessive pressure. Analysis of the fossils, sediment and the depositional environment indicate that after burial, the nautiloid cameral spaces were probably filled with both liquid and gas, and the body chamber was filled with semi‐solid thixotropic mud. To prevent conch collapse at the time of septal implosion, the thixotropic mud filling the nautiloid body chamber acted as a liquid at the time of stress release during septal failure. The stress was produced by combined lithostatic and hydrostatic pressures, which fluidized the unlithified thixotropic mud that flowed from the body chamber into the phragmocone during septal collapse. After the septal implosion and when flowage ceased, the thixotropic mud quickly resolidified into a solid state providing internal conch support that prevented the collapse of the conch. □Carboniferous, nautiloids, septal implosion, taphonomy, thixotropic mud.  相似文献   

20.
There is a high probability that bactritoids represent a paraphylum or polyphylum. The initial chambers or protoconchs of the Early-Middle DevonianBactrites Sandberger,Devonobactrites Shimansky, andLobobactrites Schindewolf are elongated spheres with a diameter of 0.3–1.0 mm. The initial chambers are larger in diameter than the slender, smooth shaft located adorally to the initial chamber. Similar apices occur in a number of Late Silurian sphaerorthoceridans with central siphuncles. Sphaerorthoceridans with a bactritoid-like apex and an eccentric siphuncle are known from the Early Devonian. The earliest questionableBactrites occurs in the Pragian (middle Early Devonian). By Emsian time bactritoids are common elements of cephalopod faunas.Bactrites-like orthocones of the Middle Ordovician and Late Silurian are homeomorphs with clearly different early growth stages. Thus, the time interval between the first appearance ofBactrites and the origin of ammonoids can be narrowed down to the Pragian to Early Emsian. The placement of the siphuncle in a ventral marginal position has been used as one of the critical morphologic features in defining the bactritoids. However, the displacement of the siphuncle from subcentral or eccentric positions toward the conch margin occurred at least three times during the Ordovician — Early Devonian evolution of the Orthocerida. Thus, there is a high probability that a marginal shift of the orthocerid siphuncle occurred in post-Emsian times, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号