首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated treatment with psychostimulant drugs induces enduring behavioral sensitization and neuroadaptations which may play an important role in the development of drug addiction. However, different number and time course in drug administration and various lengths of drug withdrawal were employed in the literature, and there were inconsistent findings in the profile of extracellular dopamine level related to behavioral sensitization. Therefore, the effects of the number of drug exposure and the length of drug withdrawal period on the sensitized behavioral response were investigated in this study. Various lengths of amphetamine (AMPH) withdrawal (1, 3 and 5 days) after a single local administration of AMPH to bilateral ventral tegmental area (VTA) were used to observe the locomotor activity response. Besides, different amounts of administration of intra-VTA AMPH were given (1, 2 and 3 times of injection) to monitor the profile of travel distance and stereotypic movements of rats after 7 days of drug withdrawal. An early and short-lived behavioral sensitization to the single intra-VTA AMPH administration was induced. In the repeated treatment group, more drug exposures were associated with escalating and robust levels of travel distance after 7 days of drug withdrawal. The authors speculated that the transient and, a later augmented locomotor activity response might represent respective phases in the development of behavioral sensitization, which in turn contributed to the formation of more lasting behavioral and neuroplastic changes associated with drug addiction.  相似文献   

2.
Behavioral sensitization to psychostimulants such as amphetamine (AMPH) is associated with synaptic modifications that are thought to underlie learning and memory. Because AMPH enhances extracellular dopamine in the striatum where dopamine and glutamate signaling are essential for learning, one might expect that the molecular and morphological changes that occur in the striatum in response to AMPH, including changes in synaptic plasticity, would affect learning. To ascertain whether AMPH sensitization affects learning, we tested wild-type mice and mice lacking NMDA receptor signaling in striatal medium spiny neurons in several different learning tests (motor learning, Pavlovian association, U-maze escape test with strategy shifting) with or without prior sensitization to AMPH. Prior sensitization had minimal effect on learning in any of these paradigms in wild-type mice and failed to restore learning in mutant mice, despite the fact that the mutant mice became sensitized by the AMPH treatment. We conclude that the changes in synaptic plasticity and many other signaling events that occur in response to AMPH sensitization are dissociable from those involved in learning the tasks used in our experiments.  相似文献   

3.
The present study utilized the acoustic startle response to evaluate the sensitization effect of repeated administration of amphetamine (AMPH). Intraperitoneal injections of AMPH induced a dose-dependent enhancement of startle: 5.0 mg/kg caused a robust effect, 1.0 or 3.0 mg/kg caused a negligible effect. Sensitization was generated by repeated administration of 5.0 mg/kg AMPH for 7 consecutive days and tested on the 8th and 9th days with challenge of saline and 3 mg/kg AMPH. The results showed that rats receiving chronic injections of AMPH, but not saline, showed significant enhancement of startle to 3.0 mg/kg AMPH, and this effect lasted at least for a month. To explore the role of the hypothalamo-pituitary-adrenal axis in this sensitization effect, rats received adrenalectomy, adrenal demedullation, or sham adrenal operation, and then were subjected to acute or chronic injections of 5.0 mg/kg AMPH. Removal of the whole adrenal gland or only the medulla abolished neither the startle enhancing effect of AMPH injected acutely nor the sensitization effect of AMPH injected chronically. In addition, intracerebroventricular infusion of a CRF antagonist, alpha-helical CRF9-41, prior to the challenge test failed to alter the sensitization effect of AMPH. These findings suggest that neither adrenal hormones nor CRF was indispensable for induction/expression of AMPH-induced sensitization in acoustic startle.  相似文献   

4.
Amphetamine (AMPH) and cocaine are indirect dopamine agonists that activate multiple signaling cascades in the striatum. Each cascade has a different subcellular location and duration of action that depend on the strength of the drug stimulus. In addition to activating D1 dopamine-Gs-coupled-protein kinase A signaling, acute psychostimulant administration activates extracellular-regulated kinase transiently in striatal cells; conversely, inhibition of extracellular-regulated kinase phosphorylation decreases the ability of psychostimulants to elevate locomotor behavior and opioid peptide gene expression. Moreover, a drug challenge in rats with a drug history augments and prolongs striatal extracellular-regulated kinase phosphorylation, possibly contributing to behavioral sensitization. In contrast, AMPH activates phosphoinositide-3 kinase substrates, like protein kinase B/Akt, only in the nuclei of striatal cells but this transient increase induced by AMPH is followed by a delayed decrease in protein kinase B/Akt phosphorylation whether or not the rats have a drug history, suggesting that the phosphoinositide-3 kinase pathway is not essential for AMPH-induced behavioral sensitization. Chronic AMPH or cocaine also alters the regulation of inhibitory G protein-coupled receptors in the striatum, as evident by a prolonged decrease in the level of regulator of G protein signaling 4 after non-contingent or contingent (self-administered) drug exposure. This decrease is exacerbated in behaviorally sensitized rats and reversed by re-exposure to a cocaine-paired environment. A decrease in regulator of G protein signaling 4 levels may weaken its interactions with metabotropic glutamate receptor 5, Galphaq, and phospholipase C beta that may enhance drug-induced signaling. Alteration of these protein-protein interactions suggests that the striatum responds to psychostimulants with a complex molecular repertoire that both modulates psychomotor effects and leads to long-term neuroadaptations.  相似文献   

5.
CART peptide has been shown to regulate the actions of psychomotor stimulants. Here we have further investigated the role of the biologically active CART 55-102 peptide in the nucleus accumbens (NAcc) in the expression of behavioral sensitization by amphetamine (AMPH). Rats were pre-exposed 5 times to either saline or AMPH (1 mg/kg, i.p.). After 2 weeks of withdrawal, rats were microinjected into the NAcc with saline or CART 55-102 (1.0, or 2.5 microg/0.5 microl/side) followed by AMPH challenge (1 mg/kg, i.p.). The enhanced increase of locomotion and rearing produced by repeated AMPH pre-exposures was dose-dependently inhibited by microinjection into the NAcc of CART 55-102 peptide. These results indicate that CART 55-102 peptide in the NAcc can play a compensatory inhibitory role in the expression of behavioral sensitization by AMPH and further suggest that CART peptide may be a useful target to control the drug addiction by psychomotor stimulants.  相似文献   

6.
The effects of serotonin (5-HT)1A drugs on the development and expression of sensitization to the locomotor effect of amphetamine (AMPH) were studied in mice. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A agonist, dose-dependently reduced the expression of AMPH (2.5 mg/kg)-induced sensitization. The latter inhibitory effect of 8-OH-DPAT was reversed by (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenyl propamine (WAY 100135), a 5-HT1A antagonist. WAY 100135 given alone did not affect expression of AMPH sensitization. Combined injections of 8-OH-DPAT, but not WAY 100135, with AMPH (2.5 mg/kg) during the development of sensitization, protected against the expression of sensitization to a challenge dose of AMPH (2.5 mg/kg) 3 days after withdrawal. The above inhibitory effect of 8-OH-DPAT on the development of AMPH sensitization was blocked by pretreatment with WAY 100135. The AMPH-induced conditioned locomotion was unaffected by pretreatment with 8-OH-DPAT. These results indicate that 5-HT1A receptors are not involved in AMPH-induced sensitization per-se, whereas their pharmacological activation leads to the inhibition of both the development and the expression of AMPH-induced sensitization.  相似文献   

7.
Although the development of behavioral sensitization to psychostimulants such as cocaine and amphetamine is confined mainly to one nucleus in the brain, the ventral tegmental area (VTA), this process is nonetheless complex, involving a complicated interplay between neurotransmitters, neuropeptides and trophic factors. In the present review we present the hypothesis that calcium-stimulated second messengers, including the calcium/calmodulin-dependent protein kinases and the Ras/mitogen-activated protein kinases, represent the major biochemical pathways whereby converging extracellular signals are integrated and amplified, resulting in the biochemical and molecular changes in dopaminergic neurons in the VTA that represent the critical neuronal correlates of the development of behavioral sensitization to psychostimulants. Moreover, given the important role of calcium-stimulated second messengers in the expression of behavioral sensitization, these signal transduction systems may represent the biochemical substrate through which the transient neurochemical changes associated with the development of behavioral sensitization are translated into the persistent neurochemical, biochemical and molecular alterations in neuronal function that underlie the long-term expression of psychostimulant-induced behavioral sensitization.  相似文献   

8.
It is well known that long-term exposure to psychostimulants induces neuronal plasticity. Recently, accumulating evidence suggests that astrocytes may actively participate in synaptic plasticity. In this study, we found that in vitro treatment of cortical neuron/glia co-cultures with either methamphetamine (METH) or morphine (MRP) caused the activation of astrocytes via protein kinase C (PKC). Purified astrocytes were markedly activated by METH, whereas MRP had no such effect. METH, but not MRP, caused a long-lasting astrocytic activation in cortical neuron/glia co-cultures. Furthermore, MRP-induced behavioral sensitization to hyper-locomotion was reversed by 2 months of withdrawal following intermitted MRP administration, whereas behavioral sensitization to METH-induced hyper-locomotion was maintained even after 2 months of withdrawal. Consistent with this cell culture study, in vivo treatment with METH, which was associated with behavioral sensitization, caused a PKC-dependent astrocytic activation in the cingulate cortex and nucleus accumbens of mice. These findings provide direct evidence that METH induces a long-lasting astrocytic activation and behavioral sensitization through the stimulation of PKC in the rodent brain. In contrast, MRP produced a reversible activation of astrocytes via neuronal PKC and a reversibility of behavioral sensitization. This information can break through the definition of drugs of abuse and the misleading of concept that morphine produces a long-lasting neurotoxicity.  相似文献   

9.
It is believed that drug-induced behavioral sensitization is an important process in the development of substance dependence. In order to explore mechanisms of sensitization, a mouse model of nicotine-induced locomotor sensitization was established, and effects of the sensitization process on mesencepahlic gene expression were examined. A schedule, which included 3 weeks of intermittent nicotine exposure (0.5 mg/kg, s.c.) and 3 weeks of withdrawal, resulted in locomotor sensitization. Effects of sensitization on mesencephalic expression of approximately 14,000 genes were assessed using oligonucleotide microarrays. Signal intensity differences in samples obtained from repeated nicotine- and saline-exposed animals were analyzed with z-test after False Discovery Rate (FDR) multiple test correction. Genes related to GABA-A receptors and protein phosphatases were among 68 genes showing significantly different expression levels between the saline and the nicotine groups. We hypothesize that some of the gene expression changes in the mesencephalon are involved in pathways leading to nicotine-induced sensitization. Down-regulation of GABA-A receptors induced by repeated nicotine exposure may facilitate dopaminergic neuronal transmission and may contribute to increased locomotor activity.  相似文献   

10.
AimsRestricted somatic growth during fetal or early postnatal periods has been suggested to serve as a predictive indicator for neuroanatomical changes and behavioral impairments during adulthood. Here, the effects of d-amphetamine sulfate (AMPH) exposure during the brain growth spurt period on this potential indicator were evaluated.Main methodsRats received 0, 5, 15 or 25 mg/kg/day of AMPH via two daily intragastric intubations from PD4-9. Body weight data were collected every other day from PD1 to 21, and then weekly until PD59. On PD9, a subset of animals was terminated 90 min after the last amphetamine treatment and the weights of the cortex, cerebellum, and brainstem were collected. Weights of these brain regions from young adult rats were also assessed on PD68.Key findingsAMPH exposure during early postnatal development limited somatic growth in a dose-related manner, with significantly lower body weights in animals assigned to the AMPH 25 and AMPH 15 groups. However, this was transient in nature, with no significant difference in weight observed after pups were weaned on PD21. Further, no differences in brain weight were observed at either age as a result of AMPH exposure.SignificanceThese findings support the idea that developmental AMPH exposure transiently restricts somatic growth. Moreover, the lack of effect on brain weight shows that AMPH differentially affects somatic and brain growth. The current findings suggest that in addition to the immediate effects on body weight, amphetamine may alter the rate of growth, and increase the risk for weight-related adult diseases.  相似文献   

11.
Many studies have suggested that the behavioral and reinforcing effects of morphine are induced by hyperactivation of the mesolimbic dopaminergic system, which results in increases in locomotor activity, c-Fos expression in the nucleus accumbens (NAc), and tyrosine hydroxylase (TH) in the ventral tegmental area (VTA). In order to investigate the effect of wild ginseng (WG) on treating morphine addiction, we examined the behavioral sensitization of locomotor activity and c-Fos and TH expression in the rat brain using immunohistochemistry. Intraperitioneal injection of WG (100 and 200 mg/kg), 30 min before administration of a daily injection of morphine (40 mg/kg, s.c.), significantly inhibited morphine-induced increases in c-Fos expression in NAc and TH expression in VTA as well as in locomotor activity, as compared with Panax ginseng. It was demonstrated that the inhibitory effect of WG on the behavioral sensitization after repeated exposure to morphine was closely associated with the reduction of dopamine biosynthesis and postsynaptic neuronal activity. It suggests that WG extract may be effective for inhibiting the behavioral effects of morphine by possibly modulating the central dopaminergic system and that WG might be a useful resource to develop an agent for preventing and treating morphine addiction.  相似文献   

12.
Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In this study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine (MA)‐induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography–mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome‐wide significance threshold (false discovery rate, FDR <0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4‐guanidinobutanoate and pantothenate in stereotypy sensitization, and myo‐inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent MA levels and, with the exception of the myo‐inositol association, suggest a mechanism whereby strain‐based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA‐induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization .  相似文献   

13.
A rapid and sensitive method for assignment of disulfide bonds using fast atom bombardment mass spectrometry is described for hen egg white lysozyme and bovine ribonuclease A. The protein is initially digested to a mixture of peptides using chemical and enzymatic methods under conditions which minimize disulfide bond reduction and exchange. The digested sample is analyzed directly by fast atom bombardment mass spectrometry before and after chemical reduction of cystine residues. An important feature of the method is that it is not necessary to completely resolve the peptides in the digest chromatographically prior to analysis. The disulfide-containing peptides are also characterized directly by prolonged exposure of the sample to the high energy xenon atom beam which results in the reduction of cystine residues. Intra- as well as interchain disulfide bond assignments are made on the basis of the mass difference between the molecular ions (MH+) of the oxidized and reduced peptides. Confirmation of the mass assignments may be obtained from the mass spectra of the digests after one cycle of manual Edman degradation. Although the quantity of protein required to unambiguously assign all of the disulfide linkages will depend on the ease with which the appropriate peptide fragments can be formed, results from these studies indicate that approximately 1 nmol of protein is usually sufficient.  相似文献   

14.
N-Methyl-D-aspartate (NMDA) antagonists induced behavioral and neurochemical changes in rodents that serve as animal models of schizophrenia. Chronic phencyclidine (PCP, 15 mg/(kg day) for 3 weeks via Alzet osmotic pump) administration enhances the amphetamine (AMPH)-induced dopamine (DA) efflux in prefrontal cortex (PFC), similar to that observed in schizophrenia. NMDA/glycine-site agonists, such as glycine (GLY), administered via dietary supplementation, reverse the enhanced effect. The present study investigated mechanisms of glycine-induced reversal of PCP-induced stimulation of AMPH-induced DA release, using simultaneous measurement of DA and AMPH in brain microdialysate, as well as peripheral and tissue AMPH levels. PCP treatment, by itself, increased peripheral and central AMPH levels, presumably via interaction with hepatic enzymes (e.g. cytochrome P450 CYP2C11). GLY (16% diet) had no effect on peripheral AMPH levels in the presence of PCP. Nevertheless, GLY significantly reduced extracellular/tissue AMPH ratios in both PFC and striatum (STR), especially following PCP administration, suggesting a feedback mediated effect on the dopamine transporter. GLY also inhibited acute AMPH (5 mg/kg)-induced DA release in PFC, but not STR. These findings suggest that GLY may modulate DA release in brain by producing feedback regulation of dopamine transporter function, possibly via potentiation of NMDA-stimulated GABA release and presynaptic GABAB receptor activation. The present studies also demonstrate pharmacokinetic interaction between AMPH and PCP, which may be of both clinical and research relevance.  相似文献   

15.
Extracellular signal-regulated kinases, protein kinase B/Akt and cyclase response element-binding protein play important roles in drug-induced neuroadaptations. Acute psychostimulant exposure rapidly alters the phosphorylation of these proteins in the striatum but less is known about their responses to repeated stimulant administration. In this study the phosphorylated state of these proteins in rat striatum was analyzed by immunoblotting 15 min and 2 h after amphetamine (AMPH)-induced behavioral sensitization. Two weeks after the last dose of 5 mg/kg, i.p. AMPH once daily for 5 days, rats were challenged with 1 mg/kg, i.p. AMPH or saline and sacrificed 15 min or 2 h later. Sensitization to AMPH-induced behavioral activity was observed in AMPH pre-treated rats after AMPH on the challenge day. Phosphorylation of all three proteins was significantly greater 15 min after AMPH in AMPH-pre-treated than in saline-pre-treated rats. Two hours after AMPH challenge in AMPH-pre-treated rats, phospho-extracellular signal-regulated kinase and phospho-cAMP response element-binding protein immunoreactivity was still significantly elevated but not after AMPH injection in saline-pre-treated rats. In contrast, phospho-Akt was down-regulated to the same extent 2 h after acute AMPH or repeated AMPH with an AMPH challenge. These data implicate differential regulation of phospho-extracellular signal-regulated kinase, phospho-cAMP response element-binding protein versus phospho-Akt in sensitized responses to AMPH.  相似文献   

16.
Cortical–striatal circuit dysfunction in mental illness may enhance addiction vulnerability. Neonatal ventral hippocampal lesions (NVHL) model this dual diagnosis causality by producing a schizophrenia syndrome with enhanced responsiveness to addictive drugs. Rat genome‐wide microarrays containing >24 000 probesets were used to examine separate and co‐occurring effects of NVHLs and cocaine sensitization (15 mg/kg/day × 5 days) on gene expression within medial prefrontal cortex (MPFC), nucleus accumbens (NAC), and caudate‐putamen (CAPU). Two weeks after NVHLs robustly amplified cocaine behavioral sensitization, brains were harvested for genes of interest defined as those altered at P < 0.001 by NVHL or cocaine effects or interactions. Among 135 genes so impacted, NVHLs altered twofold more than cocaine, with half of all changes in the NAC. Although no genes were changed in the same direction by both NVHL and cocaine history, the anatomy and directionality of significant changes suggested synergy on the neural circuit level generative of compounded behavioral phenotypes: NVHL predominantly downregulated expression in MPFC and NAC while NVHL and cocaine history mostly upregulated CAPU expression. From 75 named genes altered by NVHL or cocaine, 27 had expression levels that correlated significantly with degree of behavioral sensitization, including 11 downregulated by NVHL in MPFC/NAC, and 10 upregulated by NVHL or cocaine in CAPU. These findings suggest that structural and functional impoverishment of prefrontal‐cortical‐accumbens circuits in mental illness is associated with abnormal striatal plasticity compounding with that in addictive disease. Polygenetic interactions impacting neuronal signaling and morphology within these networks likely contribute to addiction vulnerability in mental illness .  相似文献   

17.
Honeybees show a remarkable behavioral plasticity at the transition from nursing inside the hive to foraging for nectar and/or pollen outside. This plasticity is important for age‐related division of labor in honeybee colonies. The behavioral transition is associated with significant volume and synaptic changes in the mushroom bodies (MBs), brain centers for sensory integration, learning, and memory. We tested whether precocious sensory exposure to light leads to changes in the density of synaptic complexes [microglomeruli (MG)] in the MBs. The results show that exposure to light pulses over 3 days induces a significant decrease in the MG density in visual subregions (collar) of the MB. Earlier studies had shown that foragers have increased levels of juvenile hormone (JH) co‐occurring with a decrease of vitellogenin (Vg). Previous work further established that RNAi‐mediated knockdown of vg and ultraspiracle (usp) induced an upregulation of JH levels, which can lead to precocious foraging. By disturbing both Vg and JH pathways using gene knockdown of vg and usp, we tested whether the changes in the hormonal system directly affect MG densities. Our study shows that MG numbers remained unchanged when Vg and JH pathways were perturbed, suggesting no direct hormonal influences on MG densities. However, mass spectrometry detection of JH revealed that precocious light exposure triggered an increase in JH levels in the hemolymph (HL) of young bees. This suggests a dual effect following light exposure via direct effects on MG reorganization in the MB calyx and a possible positive feedback on HL JH levels. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1141–1153, 2014  相似文献   

18.
Repeated administration of methamphetamine (MAP) results in an increased behavioral response to the drug during subsequent exposure. This phenomenon is called behavioral sensitization. Sensitization is an enduring phenomenon, and suggests chronic alterations in neuronal plasticity. MAP-induced sensitization has been proposed and widely investigated as an animal model of MAP psychosis and schizophrenia. However, little is known about the molecular mechanisms underlying MAP-induced sensitization. 2-DE-based proteomics allows us to examine global changes in protein expression in complex biological systems and to propose hypotheses concerning the mechanisms underlying various pathological conditions. In the present study, we examined protein expression profiles in the striatum of MAP-sensitized rats using 2-DE-based proteomics. Repeated administration of MAP (4.0 mg/kg, once a day, intraperitoneal (i.p.)) for 10 days significantly augmented the locomotor response to an MAP challenge injection (1.0 mg/kg, i.p.) on day 11. This enhanced activity was maintained even after a week of drug abstinence. 2-DE analysis revealed 42 protein spots were differentially regulated in the striatum of MAP-sensitized rats compared to control. Thirty-one protein spots were identified using MALDI-TOF, including synapsin II, synaptosomal-associated protein 25 (SNAP-25), adenylyl cyclase-associated protein 1 (CAP1), and dihydropyrimidinase-related protein 2 (DRP2). These proteins can be related to underlying mechanisms of MAP-induced behavioral sensitization, indicating cytoskeletal modification, and altered synaptic function.  相似文献   

19.
Protein oxidation by reactive oxygen species has been associated with aging and neurodegenerative disorders, and histidine is one of the major oxidation targets due to its metal‐chelating property and susceptibility to metal‐catalyzed oxidation. 2‐Oxohistidine, the major product of histidine oxidation, has been recently identified as a stable marker of oxidative damage in biological systems, but its biophysical and biochemical properties are understudied, partly because of difficulties in its chemical synthesis. We developed an efficient method to generate a 2‐oxohistidine side chain using metal‐catalyzed oxidation, applicable to both monomers and peptides. By optimizing reagent ratios and pH buffering in Cu2+/ascorbate/O2 reaction system, we improved the yield more than tenfold compared to reported conditions, which allowed us to obtain homogeneously modified 2‐oxohisidine peptides for further studies. Analysis of 2‐oxohistidine‐containing model peptides by liquid chromatography‐tandem mass spectrometry demonstrated increased retention time in reverse‐phase chromatography and general stability of 2‐oxohistidine under electrospray ionization and collision‐induced dissociation. Thus, large‐scale analysis of 2‐oxohistidine‐modified proteome should be feasible using shotgun protein mass spectrometry, and we were able to observe such peptides in proteomics datasets. The feasibility of acquiring purified peptide probes and peptide antigens containing 2‐oxohistidine will help advance the study of this non‐enzymatic posttranslational modification. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Advancements in high‐resolution HPLC and mass spectrometry have reinvigorated the application of this technology to identify peptides eluted from immunopurified MHC class I molecules. Three melanoma cell lines were assessed using w6/32 isolation, peptide elution and HPLC purification; peptides were identified by mass spectrometry. A total of 13 829 peptides were identified; 83–87% of these were 8–11 mers. Only approximately 15% have been described before. Subcellular locations of the source proteins showed even sampling; mRNA expression and total protein length were predictive of the number of peptides detected from a single protein. HLA‐type binding prediction for 10 078 9/10 mer peptides assigned 88–95% to a patient‐specific HLA subtype, revealing a disparity in strength of predicted binding. HLA‐B*27‐specific isolation successfully identified some peptides not found using w6/32. Sixty peptides were selected for immune screening, based on source protein and predicted HLA binding; no new peptides recognized by antimelanoma T cells were discovered. Additionally, mass spectrometry was unable to identify several epitopes targeted ex vivo by one patient's T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号