首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal species differ in the variability of their clutch sizes, as well as in mean clutch sizes. This phenomenon is particularly obvious in lizards, where virtually invariant clutch sizes have evolved independently in at least 23 lineages in seven families. Reduced variance in clutch size may arise either as an adaptation (because females with less variable clutch sizes have higher fitness) or as an indirect by-product of selection on other life-history characteristics. Comparative data on Australian scincid lizards indicate that variance in clutch sizes is lowest among species with low mean clutch sizes, small body sizes and a low variance in body sizes of adult females. Phylogenetic analysis shows that evolutionary decreases in the variance of clutch size have accompanied decreases in mean clutch sizes and decreases in the variance of adult female body sizes. Tropical lizards may also exhibit lower variance in clutch size. Most of these characteristics are correlated in occurrence, and may be allometrically tied to small body size. Hence, low variance in clutch size may be a consequence of allometric effects on a correlated suite of life-history characteristics. Exceptions to the general patterns noted above—especially, lizard species with invariant clutch sizes but large body sizes—may be due to loss of genetic variance for clutch sizes in lineages that have passed through a “bottleneck” of small body sizes and hence, low variance in clutch sizes.  相似文献   

2.
We examined the effects of hibernation and fasting on intestinal glucose and proline uptake rates of chuckwallas (Sauromalus obesus) and on the size of organs directly or indirectly related to digestion. These lizards show geographic variation in body size and growth rate that parallels an elevational gradient in our study area. At low elevation, food is available only for a short time during the spring; at high elevation, food may also be available during summer and autumn, depending on rainfall conditions in a given year. We hypothesized that low-elevation lizards with a short season of food availability would show more pronounced regulation of gut size and function than high-elevation lizards with prolonged or bimodal food availability. Hibernating lizards from both elevations had significantly lower uptake rates per milligram intestine for both nutrients, and lower small intestine mass, than active lizards. The combination of these two effects resulted in significantly lower total nutrient uptake in hibernating animals compared to active ones. The stomach, large intestine, and cecum showed lower masses in hibernators, but these results were not statistically significant. The heart, kidney, and liver showed no difference in mass between hibernating and nonhibernating animals. Lizards from low elevations with a short growing season also showed a greater increase in both uptake rates and small intestine mass from the hibernating to the active state, compared to those from high elevations with longer growing seasons. Thus, compared to those from long growing season areas, lizards from short growing season areas have equal uptake capacity during hibernation but much higher uptake capacity while active and feeding. This pattern of regulation of gut function may or may not be an adaptive response, but it is consistent with variation in life-history characteristics among populations. In areas with a short season, those lizards that can extract nutrients quickly and then reduce the gut will be favored; in areas where food may be available later in the year, those lizards that maintain an active gut would be favored. While other researchers have found much greater magnitudes of gut regulation when making comparisons among species, we find the different patterns of change in gut function between different populations of chuckwallas particularly intriguing because they occur within a single species.  相似文献   

3.
Sexual‐size dimorphism (SSD) is widespread in animals. Body length is the most common trait used in the study of SSD in reptiles. However, body length combines lengths of different body parts, notably heads and abdomens. Focusing on body length ignores possible differential selection pressures on such body parts. We collected the head and abdomen lengths of 610 lizard species (Reptilia: Squamata: Sauria). Across species, males have relatively larger heads, whereas females have relatively larger abdomens. This consistent difference points to body length being an imperfect measure of lizard SSD because it comprises both abdomen and head lengths, which often differ between the sexes. We infer that female lizards of many species are under fecundity selection to increase abdomen size, consequently enhancing their reproductive output (enlarging either clutch or offspring size). In support of this, abdomens of lizards laying large clutches are longer than those of lizards with small clutches. In some analyses, viviparous lizards have longer abdomens than oviparous lizards with similar head lengths. Our data also suggest that male lizards are under sexual selection to increase head size, which is positively related to winning male–male combats and to faster grasping of females. Thus, larger heads could translate into higher probability to mate. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 665–673.  相似文献   

4.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

5.
As more data have become available on lizard diets in the past few decades, researchers have stressed the importance of lizards as pollinators and seed dispersers. Whereas large body size has been traditionally put forward as a major biological factor allowing herbivory and frugivory in lizards, a recent review of frugivory and seed dispersal by lizards showed that frugivory might be considered to be a typical island phenomenon, independent of body size. Here we show that frugivory is correlated with lizard body size among a group of syntopic Anolis species in Jamaica, with larger species eating more fruit. Additionally, the size of the fruits consumed is significantly related to lizard body size. Multiple regression analyses show that this is largely a pure body size effect as head shape or residual bite force are uncorrelated to overall fruit size. Moreover, we demonstrate that among polychrotid (Anolis-like) lizards in general, those that consume fruit are on average larger than those that do not. Lizards from the mainland were not significantly different in body size from island species. We thus suggest that fruit consumption in polychrotid lizards is mediated by large body size whether living on islands or not.  相似文献   

6.
Sexual size dimorphism (SSD) is often assumed to reflect the phenotypic consequences of differential selection operating on each sex. Species that exhibit SSD may also show intersexual differences in other traits, including field‐active body temperatures, preferred temperatures, and locomotor performance. For these traits, differences may be correlated with differences in body size or reflect sex‐specific trait optima. Male and female Yarrow's spiny lizards, Sceloporus jarrovii, in a population in southeastern Arizona exhibit a difference in body temperature that is unrelated to variation in body size. The observed sexual variation in body temperature may reflect divergence in thermal physiology between the sexes. To test this hypothesis, we measured the preferred body temperatures of male and female lizards when recently fed and fasted. We also estimated the thermal sensitivity of stamina at seven body temperatures. Variation in these traits provided an opportunity to determine whether body size or sex‐specific variation unrelated to size shaped their thermal physiology. Female lizards, but not males, preferred a lower body temperature when fasted, and this pattern was unrelated to body size. Larger individuals exhibited greater stamina, but we detected no significant effect of sex on the shape or height of the thermal performance curves. The thermal preference of males and females in a thermal gradient exceeded the optimal temperature for performance in both sexes. Our findings suggest that differences in thermal physiology are both sex‐ and size‐based and that peak performance at low body temperatures may be adaptive given the reproductive cycles of this viviparous species. We consider the implications of our findings for the persistence of S. jarrovii and other montane ectotherms in the face of climate warming.  相似文献   

7.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

8.
Males and females differ in body size in many animals, but the direction and extent of this sexual size dimorphism (SSD) varies widely. Males are larger than females in most lizards of the iguanian clade, which includes dragon lizards (Agamidae). I tested whether the male larger pattern of SSD in the peninsula dragon lizard, Ctenophorus fionni, is a result of sexual selection for large male size or relatively higher mortality among females. Data on growth and survivorship were collected from wild lizards during 1991–1994. The likelihood of differential predation between males and females was assessed by exposing pairs of male and female lizards to a predator in captivity, and by comparing the frequency of tail damage in wild‐caught males and females. Male and female C. fionni grew at the same rate, but males grew for longer than females and reached a larger asymptotic size (87 mm vs. 78 mm). Large males were under‐represented in the population because they suffered higher mortality than females. Predation may account for some of this male‐biased mortality. The male‐biased SSD in C. fionni resulted from differences in growth pattern between the sexes. The male‐biased SSD was not the result of proximate factors reducing female body size. Indeed SSD in this species remained male‐biased despite high mortality among large males. SSD in C. fionni is consistent with the ultimate explanation of sexual selection for large body size in males.  相似文献   

9.
Among species with sexual size dimorphism (SSD), taxa in which males are the larger sex have increasing SSD with increasing body size, whereas in taxa in which females are the larger sex, SSD decreases with body size: Rensch's rule. We show in flying lizards, a clade of mostly female‐larger species, that SSD increases with body size, a pattern similar to that in clades with male‐biased SSD or more evenly mixed SSD. The observed pattern in Draco appears due to SSD increasing with evolutionary changes in male body size; specifically divergence in body size among species that are in sympatric congeneric assemblages. We suggest that increasing body size, resulting in decreased gliding performance, reduces the relative gliding cost of gravidity in females, and switches sexual selection in males away from a small‐male, gliding advantage and toward selection on large size and fighting ability as seen in many other lizards. Thus, selection for large females is likely greater than selection for large males at the smaller end of the body size continuum, whereas this relationship reverses for species at the larger end of the continuum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 270–282.  相似文献   

10.
The population dynamics of varanids (large monitor lizards) is poorly understood. We report on the most detailed study to date of a population of one of Australia’s largest semi-aquatic varanids, Varanus mertensi. Survival of V. mertensi was derived from known-fate modelling of radio-tracked individuals over two and a half years. We demonstrate empirically what intuition suggests; that apparent survival probability in long-lived lizards is high over short sampling periods, with body size and gender influencing these estimates. Survival estimation in long-lived species such as varanids clearly requires long-term studies.  相似文献   

11.
The evolution of striking phenotypes on islands is a well‐known phenomenon, and there has been a long‐standing debate on the patterns of body size evolution on islands. The ecological causes driving divergence in insular populations are, however, poorly understood. Reduced predator fauna is expected to lower escape propensity, increase body size and relax selection for crypsis in small‐bodied, insular prey species. Here, we investigated whether escape behaviour, body size and dorsal coloration have diverged as predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than mainland lizards. Additionally, we found evidence for larger between‐population variation in body size among the islet populations than mainland populations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed predation pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands.  相似文献   

12.
Summary Previous studies have suggested that tropical and temperate-zone lizards may differ fundamentally in life histories. We tested the applicability of this idea to Australian species by comparing temperate-zone species of agamid and scincid lizards with their congeners from the seasonal tropics. Data were derived from dissection of 1,941 specimens and from published information. Clutch size and egg size were positively correlated with mean maternal body size in most lizard species from both climatic zones. Mean body size of the lizards studies did not differ between the tropics and the temperate zone, nor did egg or hatchling size. However, tropical skinks showed considerably (approximately 20%) lower clutch size and relative clutch mass than did temperate-zone skinks. This difference was partly due to the higher incidence of species with low, invariant clutch size in the tropical lizard fauna (as seen in other continents as well), but primarily due to a trend for lineages (especially genera) with relatively high fecundity to be more common in the temperate zone than in the tropics. In contrast to studies on African lizards, our data suggested that modification of clutch size between areas has not occurred within genera: congeneric species from the tropics and temperate zone did not differ in clutch size. Production of more than one clutch per annum by individual females was common in both climatic zones. Tropical lizards may differ from temperate-zone species in showing higher reproductive frequencies, more rapid growth and earlier maturation. However, most of these effects may be due to phenotypic responses to environmental conditions (especially longer annual activity season), rather than to genetically based lifehistory adaptations.  相似文献   

13.
Information from lizard lineages that have evolved a highly elongate (snake‐like) body form may clarify the selective forces important in the early evolution of snakes. Lizards have evolved bodily elongation via two distinct routes: as an adaptation to burrowing underground or to rapid locomotion above ground. These two routes involve diametrically opposite modifications to the body plan. Burrowing lizards have elongate trunks, small heads, short tails, and relatively constant body widths, whereas surface‐active taxa typically have shorter trunks, wider heads, longer tails, and more variable body widths. Snakes resemble burrowing rather than surface‐active (or aquatic) lizards in these respects, suggesting that snakes evolved from burrowing lizards. The trunk elongation of burrowing lizards increases the volume of the alimentary tract, so that an ability to ingest large meals (albeit consisting of small individual prey items) was present in the earliest snakes. Subsequent shifts to ingestion of wide‐bodied prey came later, after selection dismantled other gape‐constraining morphological attributes, some of which may also have arisen as adaptations to burrowing through hard soil (e.g. relatively small heads, rigid skulls). Adaptations of snake skulls to facilitate ingestion of large prey have evolved to compensate for the reduction of relative head size accompanying bodily elongation; relative to predator body mass, maximum sizes of prey taken by snakes may not be much larger than those of many lizards. This adaptive scenario suggests novel functional links between traits, and a series of testable predictions about the relationships between squamate morphology, habitat, and trophic ecology. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 293–304.  相似文献   

14.
Although the relationship between dietary and phenotypic specialization has been well documented for many vertebrate groups, it has been stated that few such general trends can be established for lizards. This is often thought to be due to the lack of dietary specialization in many lizards. For example, many species that are reported to be insectivorous may also consume a variety of plant materials, and the reverse is often true as well. In this study, we investigate whether a correlation exists between general cranial form and dietary niche in lizards. Additionally, we test previously proposed hypotheses suggesting that herbivorous lizards should be larger bodied than lizards with other diets. Our data indicate that lizards specializing in food items imposing different mechanical demands on the feeding system show clear patterns of morphological specialization in their cranial morphology. True herbivores (diet of fibrous and tough foliage) are clearly distinguished from omnivorous and carnivorous lizards by having taller skulls and shorter snouts, likely related to the need for high bite forces. This allows herbivores to mechanically reduce relatively less digestible foliage. Carnivores have relatively longer snouts and retroarticular processes, which may result in more efficient capture and processing of elusive prey. When analysed in an explicit phylogenetic context, only snout length and skull mass remained significantly different between dietary groups. The small number of differences in the phylogenetic analyses is likely the result of shared evolutionary history and the relative paucity of independent origins of herbivory and omnivory in our sample. Analyses of the relationship between diet and body size show that on average herbivores have a larger body size than carnivores, with omnivores intermediate between the two other dietary groups. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 433–466.  相似文献   

15.
Body size is directly linked to key life history traits such as growth, fecundity, and survivorship. Identifying the causes of body size variation is a critical task in ecological and evolutionary research. Body size variation along altitudinal gradients has received considerable attention; however, the underlying mechanisms are poorly understood. Here, we compared the growth rate and age structure of toad‐headed lizards (Phrynocephalus vlangalii) from two populations found at different elevations in the Qinghai‐Tibetan Plateau. We used mark‐recapture and skeletochronological analysis to identify the potential proximate causes of altitudinal variation in body size. Lizards from the high‐elevation site had higher growth rates and attained slightly larger adult body sizes than lizards from the low‐elevation site. However, newborns produced by high‐elevation females were smaller than those by low‐elevation females. Von Bertalanffy growth estimates predicted high‐elevation individuals would reach sexual maturity at an earlier age and have a lower mean age than low‐elevation individuals. Relatively lower mean age for the high‐elevation population was confirmed using the skeletochronological analysis. These results support the prediction that a larger adult body size of high‐elevation P. vlangalii results from higher growth rates, associated with higher resource availability.  相似文献   

16.
Many animals rely on fat reserves, to keep them alive through extended periods of food shortage, such as the winter, and to provide additional energy for reproduction. Fat reserves, measured relative to an animal's size, are often referred to as the animal's body condition. The present study investigated how different levels of grazing by domestic stock in native grassland habitat affect the body condition of the pygmy bluetongue lizard (Tiliqua adelaidensis), and if these effects are related to changes in the abundance and size of grasshoppers which are the lizards primary source of food. The initial hypothesis was that lizards would have the highest body condition in moderately grazed paddocks, because those paddocks would have more grasshoppers than heavily grazed paddocks, and better visual conditions for lizards to catch those grasshoppers than in ungrazed paddocks. The results, however, showed that both lizard body condition and the abundance of grasshoppers increased with decreasing grazing intensity. The connection between lizard body condition and abundance of grasshoppers was complex. Within an activity season, lizard body condition generally declined from spring to summer, while the number of grasshoppers grew. The mean size of grasshoppers seemed to be more important, as lizard body condition was higher in spring, the time of year with the largest grasshoppers. These results show that the intensity of grazing by domestic stock influences the body condition of pygmy bluetongue lizards, but that this effect is not entirely due to the reduction in the number of grasshoppers resulting from grazing.  相似文献   

17.
Abstract When selection acts on social or behavioral traits, the fitness of an individual depends on the phenotypes of its competitors. Here, we describe methods and statistical inference for measuring natural selection in small social groups. We measured selection on throat color alleles that arises from microgeographic variation in allele frequency at natal sites of side‐blotched lizards (Uta stansburiana). Previous game‐theoretic analysis indicates that two color morphs of female side‐blotched lizards are engaged in an offspring quantity‐quality game that promotes a density‐and frequency‐dependent cycle. Orange‐throated females are r‐strategists. They lay large clutches of small progeny, which have poor survival at high density, but good survival at low density. In contrast, yellow‐throated females are K‐strategists. They lay small clutches of large progeny, which have good survival at high density. We tested three predictions of the female game: (1) orange progeny should have a fitness advantage at low density; (2) correlational selection acts to couple color alleles and progeny size; and (3) this correlational selection arises from frequency‐dependent selection in which large hatchling size confers an advantage, but only when yellow alleles are rare. We also confirmed the heritability of color, and therefore its genetic basis, by producing progeny from controlled matings. A parsimonious cause of the high heritability is that three alleles (o, b, y) segregate as one genetic factor. We review the physiology of color formation to explain the possible genetic architecture of the throat color trait. Heritability of color was nearly additive in our breeding study, allowing us to compute a genotypic value for each individual and thus predict the frequency of progeny alleles released on 116 plots. Rather than study the fitness of individual progeny, we studied how the fitness of their color alleles varied with allele frequency on plots. We confirmed prediction 1: When orange alleles are present in female progeny, they have higher fitness at low density when compared to other alleles. Even though the difference in egg size of the female morphs was small (0.02 g), it led to knife‐edged survival effects for their progeny depending on local social context. Selection on hatchling survival was not only dependent on color alleles, but on a fitness interaction between color alleles and hatchling size, which confirmed prediction 2. Sire effects, which are not confounded by maternal phenotype, allowed us to resolve the frequency dependence of correlational selection on egg size and color alleles and thereby confirmed prediction 3. Selection favored large size when yellow sire alleles were rare, but small size when they were common. Correlational selection promotes the formation of a self‐reinforcing genetic correlation between the morphs and life‐history variation, which causes selection in the next density and frequency cycle to be exacerbated. We discuss general conditions for the evolution of self‐reinforcing genetic correlations that arise from social selection associated with frequency‐dependent sexual and natural selection.  相似文献   

18.
The anatomy of the ventral neck region of the scincid lizards Chalcides ocellatus and Scincus scincus is presented and is found to be similar to that of other lizards as described in the literature. The internal carotid artery arises by 3-5 roots from the dorsal side of the ascending limb of the carotid arch. During its first part, the internal carotid artery is completely divided into two nearly equal channels. The carotid sinus is more complicated in Chalcides than in Scincus. In lizards, it may be homologous to the carotid labyrinth of fishes and amphibians. Around the origin of the internal carotid artery are two kinds of epithelioid cells scattered in the adventitial connective tissue: a- large cells with rounded, faintly stained nuclei, and little, clear cytoplasm; b- cells with small darkly stained nuclei. Both kinds of cells appear to represent different levels of secretory activity. The number of the large cells increases with greater complexity of the carotid sinus. The cells also increase in size and number during summer (sexual period); this is especially true in younger animals. The epithelioid cells are considered to be homologous to the carotid body of higher vertebrates. The carotid sinus and epithelioid cells together form a closely interrelated system which may be intermediate between the carotid labyrinth of fishes and amphibians, and the carotid body of birds and mammals.  相似文献   

19.
Summary Male and femalePsammodromus hispanicus from southern Europe were acclimated to four seasonal conditions of photoperiod and night time temperature. During the dark period, the lizards' body temperatures fell to ambient air temperature but during the light period the lizards were allowed to thermoregulate behaviourally and at such times the lizards' mean body temperature varied from 29.0°C to 32.6°C. The resting metabolic rate of these lizards was measured in 5°C steps from 5°C to 30°C or 35°C. Sexual condition had little effect on resting metabolic rate, but at low temperatures lizards acclimated to winter or spring seasonal conditions had lower resting metabolic rates than those acclimated to summer or autumn conditions. At temperatures above 20°C seasonal acclimation had no effect on resting metabolic rate. It is considered that the reduction in low temperature metabolic rate in spring and winter is induced by low night time temperatures and serves to conserve energy during those seasons when lizards must spend long periods at low temperature without being able to feed.  相似文献   

20.
Aim Body size is instrumental in influencing animal physiology, morphology, ecology and evolution, as well as extinction risk. I examine several hypotheses regarding the influence of body size on lizard evolution and extinction risk, assessing whether body size influences, or is influenced by, species richness, herbivory, island dwelling and extinction risk. Location World‐wide. Methods I used literature data and measurements of museum and live specimens to estimate lizard body size distributions. Results I obtained body size data for 99% of the world's lizard species. The body size–frequency distribution is highly modal and right skewed and similar distributions characterize most lizard families and lizard assemblages across biogeographical realms. There is a strong negative correlation between mean body size within families and species richness. Herbivorous lizards are larger than omnivorous and carnivorous ones, and aquatic lizards are larger than non‐aquatic species. Diurnal activity is associated with small body size. Insular lizards tend towards both extremes of the size spectrum. Extinction risk increases with body size of species for which risk has been assessed. Main conclusions Small size seems to promote fast diversification of disparate body plans. The absence of mammalian predators allows insular lizards to attain larger body sizes by means of release from predation and allows them to evolve into the top predator niche. Island living also promotes a high frequency of herbivory, which is also associated with large size. Aquatic and nocturnal lizards probably evolve large size because of thermal constraints. The association between large size and high extinction risk, however, probably reflects a bias in the species in which risk has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号