首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The foliage‐dwelling spider fauna was collected in maize fields and on stinging nettles in adjacent margins in Bavaria, South Germany. Two different sampling methods were evaluated: drop cloth sampling and suction sampling. The overall catch was dominated by juvenile spiders, web‐building spiders, and spiders of the families Theridiidae, Linyphiidae, Tetragnathidae and Araneidae (in decreasing order). Field margins harboured more species than maize fields, whereas the total spider abundance was higher in the maize crop. Web‐building spiders such as Theridiidae and Linyphiidae were prominent in maize by individual numbers. Suction sampling with a small suction device proved to be a more efficient and consistent sampling method for foliage‐dwelling spiders than drop cloth sampling. Density and species richness of foliage‐dwelling spiders in maize was shown to be fairly high, implying that spiders of higher strata may play a more important role in biological control than suspected up to now.  相似文献   

3.
4.
Parasitological research is often contingent on the knowledge of the phylogeny/genealogy of the studied group. Although molecular phylogenetics has proved to be a powerful tool in such investigations, its application in the traditional fashion, based on a tree inference from the primary nucleotide sequences may, in many cases, be insufficient or even improper. These limitations are due to a number of factors, such as a scarcity/ambiguity of phylogenetic information in the sequences, an intricacy of gene relationships at low phylogenetic levels, or a lack of criteria when deciding among several competing coevolutionary scenarios. With respect to the importance of a precise and reliable phylogenetic background in many biological studies, attempts are being made to extend molecular phylogenetics with a variety of new data sources and methodologies. In this review, selected approaches potentially applicable to parasitological research are presented and their advantages as well as drawbacks are discussed. These issues include the usage of idiosyncratic markers (unique features with presumably low probability of homoplasy), such as insertion of mobile elements, gene rearrangements and secondary structure features; the problem of ancestral polymorphism and reticulate relationships at low phylogenetic levels; and the utility of a molecular clock to facilitate discrimination among alternative scenarios in host-parasite coevolution.  相似文献   

5.
Body size affects important fitness variables such as mate selection, predation and tolerance to heat, cold and starvation. It is therefore subject to intense evolutionary selection. Recent genetic and physiological studies in insects are providing predictions as to which gene systems are likely to be targeted in selecting for changes in body size. These studies highlight genes and pathways that also control size in mammals: insects use insulin-like growth factor (IGF) and Target of rapamycin (TOR) kinase signalling to coordinate nutrition with cell growth, and steroid and neuropeptide hormones to terminate feeding after a genetically encoded target weight is achieved. However, we still understand little about how size is actually sensed, or how organ-intrinsic size controls interface with whole-body physiology.  相似文献   

6.
7.
Ades SE 《Current biology : CB》2004,14(21):R924-R926
The ClpXP protease of bacteria can degrade a wide variety of proteins while maintaining remarkable substrate selectivity. New work in Escherichia coli implicates adaptor proteins in enhancing substrate selectivity and regulating the flow of substrates to cellular proteases.  相似文献   

8.
9.
Nonrandom recruitment of parasites among hosts can lead to genetic differentiation among hosts and mating dynamics that promote inbreeding. It has been hypothesized that strictly aquatic parasites with intermediate hosts will behave as panmictic populations among hosts because ample opportunity exists for random mixing of unrelated individuals during transmission to the definitive host. A previous allozyme study on the marine trematode Lecithochirium fusiforme did not support this hypothesis; in that, there was genetic differentiation among, and significant heterozygote deficiencies within, definitive hosts. We revisit this system and use microsatellites to obtain multilocus genotypes. Our goal was to determine whether cryptic subgroups and/or the presence of clones could account for the apparent deviation from 'panmixia'. We find strong evidence for cryptic subdivision (three genetic clusters) that causes the Wahlund effect and differentiation among definitive hosts. After accounting for these cryptic groups, we see panmictic genetic structure among definitive hosts that is consistent with the 'high mixing in aquatic habitats' hypothesis. We see evidence for cotransmission of clones in all three clusters, but this level of clonal structure did not have a major impact in causing deviations from Hardy-Weinberg equilibrium, and only affected genetic differentiation among hosts in one cluster. A cursory examination of the data may have led to incorrect conclusions about nonrandom transmission. However, it is obvious in this system that there is more than meets the eye in relation to the actual make-up of parasite populations. In general, the methods we employ will be useful for elucidating hidden patterns in other organisms where cryptic structure may be common (e.g. those with limited morphology or complex life histories).  相似文献   

10.
11.
12.
Arms races between avian brood parasites and their hosts often result in parasitic mimicry of host eggs, to evade rejection. Once egg mimicry has evolved, host defences could escalate in two ways: (i) hosts could improve their level of egg discrimination; and (ii) negative frequency-dependent selection could generate increased variation in egg appearance (polymorphism) among individuals. Proficiency in one defence might reduce selection on the other, while a combination of the two should enable successful rejection of parasitic eggs. We compared three highly variable host species of the Afrotropical cuckoo finch Anomalospiza imberbis, using egg rejection experiments and modelling of avian colour and pattern vision. We show that each differed in their level of polymorphism, in the visual cues they used to reject foreign eggs, and in their degree of discrimination. The most polymorphic host had the crudest discrimination, whereas the least polymorphic was most discriminating. The third species, not currently parasitized, was intermediate for both defences. A model simulating parasitic laying and host rejection behaviour based on the field experiments showed that the two host strategies result in approximately the same fitness advantage to hosts. Thus, neither strategy is superior, but rather they reflect alternative potential evolutionary trajectories.  相似文献   

13.
14.
In a river survey, Gammarus pulex amphipods both unparasitised and parasitised with the acanthocephalan Echinorhynchus truttae were distributed similarly with respect to flow regimen, tending to be more abundant in faster, shallower, riffle patches. However, there was a higher prevalence of parasitism in faster, shallower areas than in slower, deeper areas and abundance correlated with macrophyte coverage for unparasitised but not parasitised amphipods, indicating subtle differences in habitat usage. A laboratory 'patch' simulation indicated that parasitism influenced micro-distribution. There were higher proportions of unparasitised amphipods in/under stone substrates and within weed. In contrast, there were higher proportions of parasitised amphipods in the water column and at the water surface. As the experiment progressed, unparasitised but not parasitised amphipod habitat usage shifted from those micro-habitats above the substrate and in the water column to those in/under the substrates. Experiments also demonstrated that parasitised amphipods were more active and had a greater preference for illumination. Previous studies of the effects of acanthocephalan parasitism of amphipod hosts have focussed on how drift behaviour is altered, now we show that subtle differences in micro-habitat usage could translate to greatly increased vulnerability to fish predation. We discuss how aggregation of parasitised individuals within specific habitats could promote parasite transmission.  相似文献   

15.
16.
Niche partitioning has long been considered to be a fundamental part of speciation and difference in body size is a straightforward proxy for ecology and niche partitioning. Here we report a new aetiocetid specimen from the upper part of Morawan Formation (Oligocene; late Chattian, ~26–24 Ma), Ashoro, Hokkaido, Japan. This specimen comprises an isolated left squamosal and an isolated left periotic; the morphology of the squamosal is distinguishable from all aetiocetids, but shows a close match with the aetiocetid Morawanocetus yabukii in that: the dorsal margin of the zygomatic process of the squamosal is twisted dorsomedially; the zygomatic process expands dorsoventrally; the zygomatic process is transversely thin; and the anterior tip of the zygomatic process is acutely tapered. The estimated body size of this Morawanocetus-like specimen is ca. 8 m, almost twice the size of all known aetiocetids (3–4 m). Moreover, the preserved periotic reveals structures that are otherwise poorly known in aetiocetids. This large Morawanocetus-like aetiocetid sheds new light on niche partitioning of Oligocene toothed mysticetes and evolution of body size in Mysticeti.  相似文献   

17.
18.
Knowing that Alfred Donné was the discoverer of an important human parasite, and finding that he was also a pioneer of photomicrography, it occurred to me that his parasite might well have become a subject of his photography. It was a simple matter to confirm that this was indeed the case. The parasite he discovered was Trichomonas vaginalis; and, in collaboration with Foucault, Donné made a photomicrograph showing several protozoan parasites lying among vaginal epithelial cells. His publication of an engraved image of the photomicrograph in 1845, was a landmark in the history of photography and microbiology.  相似文献   

19.
20.
Some reports have described the interference of Leishmania on sand flies physiology, and such behavior most likely evolved to favor the development and transmission of the parasite. Most of these studies showed that Leishmania could modulate the level of proteases in the midgut after an infective blood meal, and decreased proteolytic activity is indeed beneficial for the development of promastigotes in the gut of sand flies. In the present study, we performed a detailed investigation of the intestinal pH in Lutzomyia longipalpis females naturally infected with Leishmania infantum and investigated the production of trypsin by these insects using different approaches. Our results allowed us to propose a mechanism by which these parasites interfere with the physiology of L. longipalpis to decrease the production of proteolytic enzymes. According to our hypothesis L. infantum promastigotes indirectly interfere with the production of trypsin by modulating the mechanism that controls the intestinal pH via the action of a yet non-identified substance released by promastigote forms inside the midgut. This substance is not an acid, whose action would be restrict on to release H+ to the medium, but is a substance that is able to interfere with midgut physiology through a mechanism involving pH control. According to our hypothesis, as the pH decreases, the proteolytic enzymes efficiency is also reduced, leading to a decline in the supply of amino acids to the enterocytes: this decline reduces the stimulus for protease production because it is regulated by the supply of amino acids, thus leading to a delay in digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号