共查询到3条相似文献,搜索用时 0 毫秒
1.
A. Meats C.J. Smallridge & B.C. Dominiak 《Entomologia Experimentalis et Applicata》2006,119(3):247-254
Dispersion theory is applied to the distribution of two kinds of sterile insect, Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann), and Queensland fruit fly (Qfly), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Dispersion theories are an essential basis of sampling theory and sampling plans, but this paper looks at them from another direction and uses data from arrays of sterile insect technique (SIT) monitoring traps to compare the utility of different measures such as coefficient of variation (CV), the exponent b of Taylor's power law, and exponent k of the negative binomial distribution and also derives predictions pertaining to the density (and hence release rate) of sterile insects that would be required to achieve effective coverage of the target area. This is far more useful than reliance on just the mean values of trap catches because such reliance takes no account of the fact that sterile flies distribute themselves unevenly with many patches inadequately covered despite the impression given by the mean. Data were used from recapture rates following either ‘roving releases’ of Medfly or releases from fixed points of Qfly. The relation of recapture rate to CV indicated that a doubling of release rate in order to double average recapture rate from 150 per trap per week to a value of 300 would have very little effect in terms of reducing CV and that there appears to be no practical prospect of reducing CV to below unity with the current methods of release without incurring a manifold increase in cost. Similarly, models derived from the negative binomial equation indicated that a law of diminishing returns applies in terms of the increase in the amount of adequate coverage (such as the percentage of traps catching >50 flies per week) that can be obtained by increasing release rates. 相似文献
2.
Danilo O. Carvalho Jorge A. Torres-Monzon Panagiota Koskinioti N.D. Asha Dilrukshi Wijegunawardana Xiao Liang Gulizar Pillwax Zhiyong Xi Kostas Bourtzis 《Entomologia Experimentalis et Applicata》2020,168(6-7):560-572
Aedes aegypti L. (Diptera: Culicidae), being the primary vector of pathogenic arboviruses, is a target for the development of novel genetic approaches to complement current conventional vector control strategies such as the combined sterile insect and incompatible insect technique (SIT/IIT). A transinfected line of Ae. aegypti carrying the wAlbB Wolbachia strain (WB2) was introgressed into two genomic backgrounds, Brazil and Mexico, producing two new Ae. aegypti strains (WB2-BRA and WB2-MEX). These strains were evaluated with respect to several life-history traits such as fecundity, fertility, longevity, pupa size, pupation curve, and male mating competitiveness, as well as their response to irradiation. Our results show that the impact of Wolbachia infection depends on the genomic background and that the Brazilian one had no significant effect, whereas the Mexican one negatively affected fertility, longevity, and pupal size. Interestingly, Wolbachia-infected Ae. aegypti lines required a lower irradiation dose to achieve complete female sterility than the uninfected ones. The present findings are discussed given the potential use of Wolbachia-infected Ae. aegypti lines in combined SIT/IIT population suppression programs. 相似文献
3.
The sterile insect technique and the Mediterranean fruit fly: assessing the utility of aromatherapy in large field enclosures 总被引:1,自引:0,他引:1
Todd E. Shelly Donald O. McInnis & Pedro Rendon 《Entomologia Experimentalis et Applicata》2005,116(3):199-208
The sterile insect technique (SIT) is widely used in integrated programs against tephritid fruit flies, particularly the Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae). Unfortunately, the mass‐rearing procedures inherent to the SIT often lead to a reduction in the male mating competitiveness. One potential solution involves the prerelease exposure of males to particular attractants. In particular, male exposure to ginger root oil [Zingiber officinale Roscoe (Zingiberaceae); hereafter GRO], has been shown to increase mating success dramatically in field cage trials. To evaluate more rigorously the effectiveness of GRO exposure, we here describe two projects that compared levels of egg sterility or pupal yield, respectively, following the release of wild flies and either GRO‐exposed (treated) sterile males or GRO‐deprived (control) sterile males in large field enclosures. In both projects, sterile males from a genetic sexing strain were exposed as adults to GRO for 24 h while held in large storage boxes. In Hawaii, we dissected eggs from fruits to determine the percentage of egg hatch at four overflooding ratios, ranging from 5 : 1 to 60 : 1 (sterile : wild males), and found that, at all four ratios, the proportion of unhatched (sterile) eggs was significantly greater in enclosures containing GRO‐exposed males than control males. In Guatemala, we allowed larvae to develop in fruits and counted the number of pupae produced. At the only overflooding ratio tested (25 : 1), pupal yield was approximately 25% lower for enclosures containing GRO‐exposed males than control males, although this difference was not statistically significant. An explanation for the differing outcomes is proposed, and the implications of these findings for the SIT are discussed. 相似文献