首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method for quantitative evaluation of data quality in regional material flow analysis (MFA) is presented. The principal idea is that data quality is a multidimensional problem that cannot be judged by individual characteristics such as the data source, given that data from official statistics may not be per se of good quality and expert estimations may not be per se of bad quality, respectively. It appears that MFA data are never totally accurate and may have certain defects that impair the quality of the data in more than one dimension. The concept of MFA information defects is introduced, and these information defects are mathematically formalized as functions of data characteristics. They are quantified on a scale from 0 (no information defect) to 1 (maximum information defect). The proposed method is illustrated in a case study on palladium flows in Austria. A quantitative evaluation of data quality provides opportunities for understanding and assessing MFA results, their a priori information basis, their reliability in decision making, and data uncertainties. It is a formal step toward better reproducibility and more transparency in MFA.  相似文献   

2.
Silver is a compound that is well known for its adverse environmental effects. More recently, silver in the form of silver nanoparticles (Ag NPs) has begun to be produced in increasingly larger amounts for antibacterial purposes in, for instance, textiles, wound dressings, and cosmetics. Several authors have highlighted the potential environmental impact of these NPs. To contribute to a risk assessment of Ag NPs, we apply a suggested method named “particle flow analysis” to estimating current emissions from society to the environment. In addition, we set up explorative scenarios to account for potential technology diffusion of selected Ag NP applications. The results are uncertain and need to be refined, but they indicate that emissions from all applications included may increase significantly in the future. Ag NPs in textiles and electronic circuitry may increase more than in wound dressings due to the limited consumption of wound dressings. Due to the dissipative nature of Ag NPs in textiles, the results indicate that they may cause the highest emissions in the future, thus partly confirming the woes of both scientists and environmental organizations. Gaps in current knowledge are identified. In particular, the fate of Ag NPs during different waste‐handling processes is outlined as an area that requires more research.  相似文献   

3.
Human activity has quadrupled the mobilization of phosphorus (P), a nonrenewable resource that is not fully recycled biologically or industrially. P is accumulated in both water and solid waste due to fertilizer application and industrial, agricultural, and animal P consumption. This paper characterizes the industrial flows, which, although smaller than the agricultural and animal flows, are an important phosphorus source contributing to the pollution of surface waters. We present the quantification of the network of flows as constrained by mass balances of the global annual metabolism of phosphorus, based on global consumption for 2004, all of which eventually ends up as waste and in the soil and water systems. We find that on a yearly basis, 18.9 million metric tons (MMT) of P is produced, of which close to 75% goes to fertilizer and the rest to industrial and others uses. Phosphoric acid is the precursor for many of the intermediate and end uses of phosphate compounds described in this study and accounts for almost 80% of all P consumed. Eventually, all of the P goes to waste: 18.5 MMT ends up in the soil as solid waste, and 1.32 MMT is emissions to air and water. Besides quantifying P flows through our economy, we also consider some possible measures that could be taken to increase the degree of recovery and optimization of this resource and others that are closely related, such as the recovery of sulfur from gypsum and wastewater (sludge), and fluorine from wet phosphoric acid production.  相似文献   

4.
This work introduces a new approach to integrating the discharges of industrial processes with macroscopic watershed systems. The key concept is that environmental quality models (such as material flow analysis) can be inverted and included in an optimization formulation that seeks to determine the maximum allowable target for the process discharges while meeting the overall environmental requirements of the watershed. Because of its holistic nature, this approach simultaneously considers the effects of the inputs and outputs to the watershed (e.g., agricultural, residential, wastewater treatment plants, industrial, and so on) and the various physical, chemical, and biological phenomena occurring within the watershed. An optimization formulation is developed to systematically represent the reverse problem formulation. To illustrate the effectiveness of this approach, a case study is solved to manage phosphorus in Bahr El‐Baqar drainage system leading to Lake Manzala in Egypt. The key environmental and economic aspects are addressed and used to screen plant location and discharges.  相似文献   

5.
Recycling rates of aluminum are defined in different (sometimes inconsistent) ways and poorly quantified. To address this situation, the definitions and calculation methods of four groups of indicators are specified for the United States: (1) indicators used to measure recycling efficiencies of old aluminum scrap at the end‐of‐life (EOL) stage, including EOL collection rate (CR), EOL processing rate, EOL recycling rate, and EOL domestic recycling rate; (2) indicators used to compare generation or use of new with old scrap, including new to old scrap ratio, new scrap ratio (NSR), and old scrap ratio; (3) indicators used to compare production or use of primary aluminum with secondary aluminum, including four recycling input rates (RIRs); and (4) indicators used to track the sinks of aluminum metal in the U.S. anthroposphere. I find that the central estimate of EOL CR varies between 38% and 65% in the United States from 1980 to 2009 and shares a relatively similar historical trend with the primary aluminum price. The RIR is shown to be significantly reduced if excluding secondary aluminum produced from new scrap resulting from the relatively high NSR. In 2003, a time when approximately 73% of all of the aluminum produced globally since 1950 was considered to still be “in service,” approximately 68% to 69% of all metallic aluminum that had entered the U.S. anthroposphere since 1900 was still in use: 67% in domestic in‐use stock and 1% to 2% exported as scrap. Only 6% to 7% was definitely lost to the environment, although the destination of 25% of the aluminum was unknown. It was either exported as EOL products, was currently hibernating, or was lost during collection.  相似文献   

6.
An increasing number of elements from the periodic table are being used in a growing number of products, enabling new material and product functionalities. Materials of high importance and high supply risks are usually referred to as critical materials. Many materials that are often considered critical are used in ways leading to their dissipative loss along the product life cycle. So far, the issue of material dissipation has been dealt with mainly on a rather aggregated level. Detailed knowledge on the occurrence and amount of dissipative losses in the life cycle of specific products is only scarcely available. Addressing this, a substance flow analysis of different critical metals along the life cycle of selected products is presented in this article. With regard to products used in Germany, the flows of indium and gallium used in copper‐indium‐gallium‐selenide (CIGS) photovoltaic cells, germanium used in polymerization catalysts, and yttrium used in thermal barrier coatings (TBCs) have been analyzed. The results comprise detailed knowledge about the life cycle stages in which dissipative losses occur and about the receiving media. In all case studies, a complete or almost complete dissipative loss can be observed, mainly to landfills and other material flows. In all case studies, material production can be identified as hotspots for dissipative losses. In two case studies fabrication and manufacturing (F&M for CIGS and TBCs) and in one case study end of life (polymerization catalysts) can be identified as further hotspots for dissipative losses. In addition, actions for reducing dissipation along the life cycle are discussed, targeting aspects such as the recovery of critical metals as by‐products, efficiency in F&M processes, and lack of recycling processes. Lack of economic incentives to apply more‐efficient technologies and processes already available is a key aspect in this regard.  相似文献   

7.
Material flows of the economic cycle can contain toxic substances, which enter the economy as impurities in raw materials or are intentionally added as minor or even main constituents during the manufacture of industrial or consumer goods. Cadmium, predominantly associated with zinc minerals, is a by-product of the primary zinc production. Cadmium is generated when zinc is extracted from zinc ores and concentrates, an intermediate product resulting from flotation processing after the zinc ore has been mined and milled. Information on the amount of cadmium generated from zinc extraction is rarely published. In this article, we assess generation and fate of cadmium accumulating worldwide in the production of primary zinc from ores and concentrates. Model calculations for the beginning of the 21st century show that annually about 30,000 tonnes of cadmium were generated, but only approximately 16,000 tonnes were converted to primary cadmium metal, key material for the production of other cadmium compounds (e.g., cadmium oxide), and cadmium-containing goods (e.g., nickel−cadmium batteries). Hence, about 14,000 tonnes of cadmium must have been transferred somewhere else. The fate of about 5,500 tonnes can be plausibly explained, but it is difficult to determine what happens to the rest.  相似文献   

8.
9.
The 20th century was a time of rapidly escalating use of lead (Pb). As a consequence, the standing stock of lead is now substantial. By linking lead extraction and use to estimates of product lifetimes and recycling, we have derived an estimate of the standing stock of lead throughout the century by top-down techniques. We find that the stock of in-use lead is almost entirely made up of batteries (68%), lead sheet (10%), and lead pipe (10%). Globally, about 200 teragrams (Tg) Pb was mined in the 20th century, and about 25 Tg Pb now makes up the in-use stock, so some 87% has been lost over time. Nonetheless, about 11% of all lead entering use was added to in-use stock in 2000, so the stock continues to increase each year. Currently, most of the stock is in Europe (32%), North America (32%), and Asia (24%). On a per capita basis, the global stock is about 5.6 kilograms (kg) Pb, and regional in-use stock ranges from 2.0 kg Pb (Africa) to 19.7 kg Pb (Europe). From a sustainability perspective, we estimate that the global lead resource is around 415 Tg Pb. Were the entire world to receive the services of lead at the level of the developed countries, some 130 Tg Pb would be needed, so there do not appear to be significant long-term limitations to the lead supply.  相似文献   

10.
Fluorine is an essential element to human health and to the chemical industry. In spite of our dependence on fluorine and fluorine compounds, we have yet to learn to use them wisely. Our fluorine history, which spans about a hundred years, has had negative effects such as hydrofluoric acid pollution caused by aluminum smelters and ozone depletion due to chlorofluorocarbon (CFC) emissions. More recent concerns center on greenhouse effects from CFCs, hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF6). In this article we note also that fluorine is a nonrenewable resource that is nonsubstitutable for many purposes. This article tracks fluorine from sources through conversion processes to end uses, most of which are dissipative. We present a stock‐flow model of the fluorine system. Based on this model we consider some possible measures that could be taken to increase the degree of recovery. To mention one example, a large percentage of the world demand for fluorspar could be supplied by the phosphate rock (fertilizer) industry, which currently dissipates a great deal of recoverable fluorine in waste phospho‐gypsum.  相似文献   

11.
This article, continuing with the themes of the companion article, expounds the capabilities of input-output techniques as applied to material flows in industrial systems. Material flows are the primary focus because of their role in directly linking natural and industrial systems and thereby being fundamental components of environmental issues in industrial economies. The specific topic in this article concerns several material flow metrics used to characterize system behavior that are derived from the ecological development of input-output techniques; most notable of these metrics are several measures of material cycling and a measure of the number of processes visited by material while in a system. These metrics are shown to be useful in analyzing the state of material flow systems. Further-more, the metrics are shown to be a central link in connecting input-output flow analysis to synthesis (i.e., the process of using measurements of system behavior to design changes to that system). By connecting the flow metrics to both environmental objectives and controllable aspects of flow models, changes to existing flow systems are synthesized to generate improved system behavior. To bring this pair of articles to a close, several limitations of input-output flow analysis are summarized with the goal of stimulating further interest and research.  相似文献   

12.
Material Flow Analysis (MFA) is a useful method for modeling, understanding, and optimizing sociometabolic systems. Among others, MFAs can be distinguished by two general system properties: First, they differ in their complexity, which depends on system structure and size. Second, they differ in their inherent uncertainty, which arises from limited data quality. In this article, uncertainty and complexity in MFA are approached from a systems perspective and expressed as formally linked phenomena. MFAs are, in a graph‐theoretical sense, understood as networks. The uncertainty and complexity of these networks are computed by use of information measures from the field of theoretical ecology. The size of a system is formalized as a function of its number of flows. It defines the potential information content of an MFA system and holds as a reference against which complexity and uncertainty are gauged. Integrating data quality measures, the uncertainty of an MFA before and after balancing is determined. The actual information content of an MFA is measured by relating its uncertainty to its potential information content. The complexity of a system is expressed based on the configuration of each individual flow in relation to its neighboring flows. The proposed metrics enable different material flow systems to be compared to one another and the role of individual flows within a system to be assessed. They provide information useful for the design of MFAs and for the communication of MFA results. For exemplification, the regional MFAs of aluminum and plastics in Austria are analyzed in this article.  相似文献   

13.
Input-output mathematics, which allows a modeler to fully consider direct and indirect relationships among conserved flows in a system, has a long history in economics with prominent use dating to Leontief in the 1930s. Nearly all previous industrial applications of input-output analysis have been grounded in the monetary flows of an economy. Here however, because of the central nature of physical flows in the environmental impact of industry, we consider physical flows to be a fundamental component of an industrial economy. Hence, we propose an input-output based approach for modeling physical flows in industry independent of their monetary implications.
In this first part of a two-part article, a framework for using input-output mathematics to model material and energy flows is constructed from a foundation laid by previous research in nutrient and energy cycling in natural ecosystems. The mathematics of input-output flow analysis is presented from an ecological perspective, culminating in two core capabilities: tracing of flows with environs (investigated in this article) and characterizing system behavior with flow metrics (presented in the second article). We assert that environ analysis is an effective means for tracing flows through industrial systems while fully considering direct and indirect flow paths. We explore material flows of aluminum and five other metals in depth using environ analysis in this article.  相似文献   

14.
Material flow analysis is a tool that is increasingly used as a foundation for resource management and environmental protection. This tool is primarily applied in a static manner to individual years, ignoring the impact of time on the material budgets. In this study, a detailed multiyear model of the Austrian phosphorus budget covering the period 1990–2011 was built to investigate its behavior over time and test the hypothesis that a multiyear approach can also contribute to the improvement of static budgets. Further, a novel method was applied to investigate the quality and characteristics of the data and quantify the uncertainty. The degree of change between the budgets was assessed and showed that approximately half of the flows have changed significantly and, at times, abruptly since 1990, but it is not possible to distinguish unequivocally between constant and moderately changing flows given their uncertainty. The study reveals that the phosphorus transported in waste flows has increased more rapidly than its recovery, which accounted for 55% to 60% of the total waste phosphorus in 1990 and only 40% in 2011. The loss ratio in landfills and cement kilns has oscillated in the range of 40% to 50%. From a methodological point of view, the multiyear approach has broadened the conceptual model of the budget, making it more suitable as a basis for material accounting and monitoring. Moreover, the analysis of the data reconciliation process over a long period of time proved to be a useful tool for identifying systematic errors in the model.  相似文献   

15.
Phosphorus (P) is a key factor in aquatic eutrophication, and P contamination has become a common issue worldwide. Many developing countries, including China, have made great efforts in the anti‐P contamination battle. In this article we mainly discuss the P flow in Wuwei, a typical county in China with insufficient wastewater treatment, using the method of static substance flow analysis. We show that characterizing P metabolic pathways and flows at the county level can provide useful information about P pollution. Through complex calculations, we found that Wuwei County released 3,552 metric tons (t) of P into the local aquatic environment in 2008 and that its P load (3.35 kilograms P per capita per year [kg P/cap/yr] or 19.43 kilograms P per hectare per year [kg‐P/ha/yr]) was greater than both the adjoining counties’ and Chaohu City's average levels combined. The agricultural subsystem discharged the largest quantity of P (2,572 t) and had a relatively low production conversion efficiency (32%) and P waste recycling rate (36%). The rural residential and small‐scale livestock breeding systems also accounted for substantial portions of P discharge. Anti‐P contamination efforts should consequently focus on those three subsystems. Based on the results of this case study, we also discuss the feasibility of potential efforts to reduce P contamination.  相似文献   

16.
This contribution presents the state of the art of economy‐wide material flow accounting. Starting from a brief recollection of the intellectual and policy history of this approach, we outline system definition, key methodological assumptions, and derived indicators. The next section makes an effort to establish data reliability and uncertainty for a number of existing multinational (European and global) material flow accounting (MFA) data compilations and discusses sources of inconsistencies and variations for some indicators and trends. The results show that the methodology has reached a certain maturity: Coefficients of variation between databases lie in the range of 10% to 20%, and correlations between databases across countries amount to an average R2 of 0.95. After discussing some of the research frontiers for further methodological development, we conclude that the material flow accounting framework and the data generated have reached a maturity that warrants material flow indicators to complement traditional economic and demographic information in providing a sound basis for discussing national and international policies for sustainable resource use.  相似文献   

17.
Material flow analysis (MFA) is a widely applied tool to investigate resource and recycling systems of metals and minerals. Owing to data limitations and restricted system understanding, MFA results are inherently uncertain. To demonstrate the systematic implementation of uncertainty analysis in MFA, two mathematical concepts for the quantification of uncertainties were applied to Austrian palladium (Pd) resource flows and evaluated: (1) uncertainty ranges expressed by fuzzy sets and (2) uncertainty ranges defined by normal distributions given as mean values and standard deviations. Whereas normal distributions represent the traditional approach for quantifying uncertainties in MFA, fuzzy sets may offer additional benefits in relation to uncertainty quantification in cases of scarce information. With respect to the Pd case study, the fuzzy representation of uncertain quantities is more consistent with the actual data availability in cases of incomplete databases, and fuzzy sets serve to highlight the effect of uncertainty on resource efficiency indicators derived from the MFA results. For both approaches, data reconciliation procedures offer the potential to reduce uncertainty and evaluate the plausibility of the model results. With respect to Pd resource management, improved formal collection of end‐of‐life (EOL) consumer products is identified as a key factor in increasing the recycling efficiency. In particular, the partial export of EOL vehicles represents a substantial loss of Pd from the Austrian resource system, whereas approximately 70% of the Pd in the EOL consumer products is recovered in waste management. In conclusion, systematic uncertainty analysis is an integral part of MFA required to provide robust decision support in resource management.  相似文献   

18.
Material flow analysis (MFA) is widely used to investigate flows and stocks of resources or pollutants in a defined system. Data availability to quantify material flows on a national or global level is often limited owing to data scarcity or lacking data. MFA input data are therefore considered inherently uncertain. In this work, an approach to characterize the uncertainty of MFA input data is presented and applied to a case study on plastics flows in major Austrian consumption sectors in the year 2010. The developed approach consists of data quality assessment as a basis for estimating the uncertainty of input data. Four different implementations of the approach with respect to the translation of indicator scores to uncertainty ranges (linear‐ vs. exponential‐type functions) and underlying probability distributions (normal vs. log‐normal) are examined. The case study results indicate that the way of deriving uncertainty estimates for material flows has a stronger effect on the uncertainty ranges of the resulting plastics flows than the assumptions about the underlying probability distributions. Because these uncertainty estimates originate from data quality evaluation as well as uncertainty characterization, it is crucial to use a well‐defined approach, building on several steps to ensure the consistent translation of the data quality underlying material flow calculations into their associated uncertainties. Although subjectivity is inherent in uncertainty assessment in MFA, the proposed approach is consistent and provides a comprehensive documentation of the choices underlying the uncertainty analysis, which is essential to interpret the results and use MFA as a decision support tool.  相似文献   

19.
The Sankey diagram is an important aid in identifying inefficiencies and potential for savings when dealing with resources. It was developed over 100 years ago by the Irish engineer Riall Sankey to analyze the thermal efficiency of steam engines and has since been applied to depict the energy and material balances of complex systems. The Sankey diagram is the main tool for visualizing industrial metabolism and hence is widely used in industrial ecology. In the history of the early 20th century, it played a major role when raw materials were scarce and expensive and engineers were making great efforts to improve technical systems. Sankey diagrams can also be used to map value flows in systems at the operational level or along global value chains. The article charts the historical development of the diagrams. After the First World War the diagrams were used to produce thermal balances of production plants for glass and cement and to optimize the energy input. In the 1930s, steel and iron ore played a strategic role in Nazi Germany. Their efficient use was highlighted with Sankey diagrams. Since the 1990s, these diagrams have become common for displaying data in life cycle assessments (LCAs) of products. Sankey diagrams can also be used to map value flows in systems at the operational level or along global value added chains. This article, the first of a pair, charts the historical development. The companion article discusses the methodology and the implicit assumptions of such Sankey diagrams.  相似文献   

20.
The Sankey diagram is an important aid in pointing up inefficiencies and potential for savings in connection with resource use. This article, the second of a pair, examines the use of Sankey diagrams in operational material flow management. The previous article described the development of the diagram and its use in the past.
Simple Sankey diagrams follow the requirement of conservation of energy or mass and allow a physical view of production systems. Advanced diagrams integrate stocks of materials beside the flows or show the different (ecological) quality of the materials. For the purpose of management, however, a further step is necessary: to illustrate the economic value of the energy and material flows and to use information from cost accounting. The use of flow charts showing added value or the costs of energy and material flows is particularly important for production systems. This article describes examples of each of these uses as well as assumptions that must be taken into account for Sankey diagrams to be used as an effective aid for decision-making in business and public policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号