首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The built environment is the largest single emitter of CO2 and an important consumer of energy. Much research has gone into the improved efficiency of building operation and construction products. Life Cycle Assessment (LCA) is commonly used to assess existing buildings or building products. Classic LCA, however, is not suited for evaluating the environmental performance of developing technologies. A new approach, anticipatory LCA (a‐LCA), promises various advantages and can be used as a design constraint during the product development stage. It helps overcome four challenges: (i) data availability, (ii) stakeholder inclusion, (iii) risk assessment, and (iv) multi‐criteria problems. This article's contribution to the line of research is twofold: first, it adapts the a‐LCA approach for construction‐specific purposes in theoretical terms for the four challenges. Second, it applies the method to an innovative prefabricated modular envelope system, the CleanTechBlock (CTB), focusing on challenge (i). Thirty‐six CTB designs are tested and compared to conventional walls. Inclusion of technology foresight is achieved through structured scenario analysis. Moreover, challenge (iv) is tackled through the analysis of different environmental impact categories, transport‐related impacts, and thickness of the wall assemblies of the CTB. The case study results show that optimized material choice and product design is needed to reach the lowest environmental impact. Methodological findings highlight the importance of context‐specific solutions and the need for benchmarking new products.  相似文献   

2.
Construction material plays an increasingly important role in the environmental impacts of buildings. In order to investigate impacts of materials on a building level, we present a bottom‐up building stock model that uses three‐dimensional and geo‐referenced building data to determine volumetric information of material stocks in Swiss residential buildings. We used a probabilistic modeling approach to calculate future material flows for the individual buildings. We investigated six scenarios with different assumptions concerning per‐capita floor area, building stock turnover, and construction material. The Swiss building stock will undergo important structural changes by 2035. While this will lead to a reduced number in new constructions, material flows will increase. Total material inflow decreases by almost half while outflows double. In 2055, the total amount of material in‐ and outflows are almost equal, which represents an important opportunity to close construction material cycles. Total environmental impacts due to production and disposal of construction material remain relatively stable over time. The cumulated impact is slightly reduced for the wood‐based scenario. The scenario with more insulation material leads to slightly higher material‐related emissions. An increase in per‐capita floor area or material turnover will lead to a considerable increase in impacts. The new modeling approach overcomes the limitations of previous bottom‐up building models and allows for investigating building material flows and stocks in space and time. This supports the development of tailored strategies to reduce the material footprint and environmental impacts of buildings and settlements.  相似文献   

3.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

4.
In many cases, policy makers and laymen perceive harmful emissions from chemical plants as the most important source of environmental impacts in chemical production. As a result, regulations and environmental efforts have tended to focus on this area. Concerns about energy use and greenhouse gas emissions, however, are increasing in all industrial sectors. Using a life cycle assessment (LCA) approach, we analyzed the full environmental impacts of producing 99 chemical products in Western Europe from cradle to factory gate. We applied several life cycle impact assessment (LCIA) methods to cover various impact areas. Our analysis shows that for both organic and inorganic chemical production in industrial countries, energy‐related impacts often represent more than half and sometimes up to 80% of the total impacts, according to a range of LCIA methods. Resource use for material feedstock is also important, whereas direct emissions from chemical plants may make up only 5% to 10% of the total environmental impacts. Additionally, the energy‐related impacts of organic chemical production increase with the complexity of the chemicals. The results of this study offer important information for policy makers and sustainability experts in the chemical industry striving to reduce environmental impacts. We identify more sustainable energy production and use as an important option for improvements in the environmental profile of chemical production in industrial countries, especially for the production of advanced organic and fine chemicals.  相似文献   

5.
This study extends existing life cycle assessment (LCA) literature by assessing seven environmental burdens and an overall monetized environmental score for eight recycle, bury, or burn options to manage clean wood wastes generated at construction and demolition activity sites. The study assesses direct environmental impacts along with substitution effects from displacing fossil fuels and managed forest wood sourcing activities. Follow‐on effects on forest carbon stocks, land use, and fuel markets are not assessed. Sensitivity analysis addresses landfill carbon storage and biodegradation rates, atmospheric emissions controls, displaced fuel types, and two alternative carbon accounting methods commonly used for waste management LCAs. Base‐case carbon accounting considers emissions and uptakes of all biogenic and fossil carbon compounds, including biogenic carbon dioxide. Base‐case results show that recycling options (recycling into reconstituted wood products or into wood pulp for papermaking) rank better than all burning or burying options for overall monetized score as well as for climate impacts, except that wood substitution for coal in industrial boilers is slightly better than recycling for the climate. Wood substitution for natural gas boiler fuel has the highest environmental impacts. Sensitivity analysis shows the overall monetized score rankings for recycling options to be robust except for the carbon accounting method, for which all options are highly sensitive. Under one of the alternative methods, wood substitution for coal boiler fuel and landfill options with high methane capture efficiency are the best for the overall score; recycling options are next to the worst. Under the other accounting alternative, wood substitution for coal and waste‐to‐energy are the best, followed by recycling options.  相似文献   

6.
Sustainable use of wood may contribute to coping with energy and material resource challenges. The goal of this study is to increase knowledge of the environmental effects of wood use by analyzing the complete value chain of all wooden goods produced or consumed in Switzerland. We start from a material flow analysis of current wood use in Switzerland. Environmental impacts related to the material flows are evaluated using life cycle assessment–based environmental indicators. Regarding climate change, we find an overall average benefit of 0.5 tonnes carbon dioxide equivalent per cubic meter of wood used. High environmental benefits are often achieved when replacing conventional heat production and energy‐consuming materials in construction and furniture. The environmental performance of wood is, however, highly dependent on its use and environmental indicators. To exploit the mitigation potential of wood, we recommend to (1) apply its use where there are high substitution benefits like the replacement of fossil fuels for energy or energy‐intensive building materials, (2) take appropriate measures to minimize negative effects like particulate matter emissions, and (3) keep a systems perspective to weigh effects like substitution and cascading against each other in a comprehensive manner. The results can provide guidance for further in‐depth studies and prospective analyses of wood‐use scenarios.  相似文献   

7.
The study fills the gap in existing literature by comparing the economic costs and environmental impacts of processes in four services companies in Europe and the United States. Process-based life cycle assessment (LCA) and the case study method are used to compare companies both on four global-scale impacts and on environmental intensity (impacts per unit cost). The study builds on prior publications on the environmental contribution of processes. The processes include all the activities of the companies that result in an entry into the bookkeeping records. The results show that despite the substantial differences in organizational characteristics and line of business, all the cases had similar environmental contributions and intensity profiles. Wages, which accounted for over half of the costs, were assumed not to cause any environmental impacts. By contrast, the office premises, which generated less than 10% of the costs, caused around 50% of the environmental impacts. At a more general level, the results suggest that both the high environmental impact and the high intensity are attributed mostly to a few premises-related processes in the services industry. The results also seem to imply that the companies could gain added value by using life cycle assessment in determining the significant environmental impacts of their operations.  相似文献   

8.
This article discusses how eco‐design management standards have been adopted and the environmental and economic results that have been obtained by the Spanish furniture manufacturers. This is precisely the industry sector in Spain where the dissemination of eco‐design standards has been most important. Using multiple case‐study methodology, the research has shown that, in three companies, more than 90% of the environmental impact of the companies’ products occurs within the manufacturing phase. Companies have implemented tools for life cycle assessment with eco‐indicators values that allow them to assess complex products and evaluate their significant environmental impacts at each stage. The environmental strategies of these companies are based on the continuous improvement of the internal processes and the review and monitoring of their activities. In this approach, the proper choice of materials and the environmental management of the supply chain are the main problems for companies. The outcomes achieved by the companies included some improvements, such as a greater control of product management and a reduction in operating costs, that have allowed them to obtain competitive advantages. Moreover, the adoption of standard management has enabled the companies to drive innovation of products, improve the image of companies and their products, significantly reduce the environmental impact of their products, and adapt to new, more demanding environmental laws and regulations.  相似文献   

9.
Government agencies, companies, and other entities are using environmental assessments, like life cycle assessment (LCA), as an input to decision‐making processes. Communicating the esoteric results of an LCA to these decision makers can present challenges, and interpretation aids are commonly provided to increase understanding. One such method is normalizing results as a means of providing context for interpreting magnitudes of environmental impacts. Normalization is mostly carried out by relating the environmental impacts of a product (or process) under study to those of another product or a spatial reference area (e.g., the United States). This research is based on the idea that decision makers might also benefit from normalization that considers comparisons to their entity's (agency, company, organization, etc.) total impacts to provide additional meaning and aid in comprehension. Two hybrid normalization schemes have been developed, which include aspects of normalization to both spatially based and entity‐based impacts. These have been named entity‐overlaid and entity‐accentuated normalization, and the schemes allow for performance‐based planning or emphasizing environmental impact types that are most relevant to an entity's operational profile, respectively. A hypothetical case study is presented to demonstrate these schemes, which uses environmental data from a U.S. transportation agency as the basis for entity normalization factors. Results of this case study illustrate how entity‐related references may be developed, and how this additional information may enhance the presentation of LCA results using the hybrid normalization schemes.  相似文献   

10.
The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn attention to the subject of raw material “criticality.” In this article, we review the state of the art regarding the integration of criticality assessment, herein termed “product‐level supply risk assessment,” as a complement to environmental life cycle assessment. We describe and compare three methods explicitly developed for this purpose—Geopolitical Supply Risk (GeoPolRisk), Economic Scarcity Potential (ESP), and the Integrated Method to Assess Resource Efficiency (ESSENZ)—based on a set of criteria including considerations of data sources, uncertainties, and other contentious methodological aspects. We test the methods on a case study of a European‐manufactured electric vehicle, and conclude with guidance for appropriate application and interpretation, along with opportunities for further methodological development. Although the GeoPolRisk, ESP, and ESSENZ methods have several limitations, they can be useful for preliminary assessments of the potential impacts of raw material supply risks on a product system (i.e., “outside‐in” impacts) alongside the impacts of a product system on the environment (i.e., “inside‐out” impacts). Care is needed to not overlook critical raw materials used in small amounts but nonetheless important to product functionality. Further methodological development could address regional and firm‐level supply risks, multiple supply‐chain stages, and material recycling, while improving coverage of supply risk characterization factors.  相似文献   

11.
In this study, we used material flow analysis and life cycle assessment to quantify the environmental impacts and impact reductions related to wood consumption in Japan from 1970 to 2013. We then conducted future projections of the impacts and reductions until 2050 based on multiple future scenarios of domestic forestry, wood, and energy use. An impact assessment method involving characterization, damage assessment, and integration with a monetary unit was used, and the results were expressed in Japanese yen (JPY). We found that environmental impacts from paper consumption, such as climate change and urban air pollution, were significant and accounted for 56% to 83% of the total environmental impacts between 1970 and 2013. Therefore, reductions of greenhouse gas, nitrogen oxide, and sulfur oxide emissions from paper production would be an effective measure to reduce the overall environmental impacts. An increase in wood use for building construction, civil engineering, furniture materials, and energy production could lead to reductions of environmental impacts (via carbon storage, material substitution, and fuel substitution) amounting to 357 billion JPY in 2050, which is equivalent to 168% of the 2013 levels. Particularly, substitution of nonwooden materials, such as cement, concrete, and steel, with wood products in building construction could significantly contribute to impact reductions. Although an increase of wood consumption could reduce environmental impacts, such as climate change, resource consumption, and urban air pollution, increased wood consumption would also be associated with land‐use impacts. Therefore, minimizing land transformations from forest to barren land will be important.  相似文献   

12.
Incorporating the beneficial use of industrial by‐products into the industrial ecology of an urban region as a substitute or supplement for natural aggregate can potentially reduce life cycle impacts. This article specifically looks at the utilization of industrial by‐products (IBPs) (coal ash, foundry sand, and foundry slag) as aggregate for roadway sub‐base construction for the Pittsburgh, Pennsylvania, urban region. The scenarios compare the use of virgin aggregate with the use of a combination of both virgin and IBP aggregate, where the aggregate material is selected based on proximity to the construction site and allows for minimization of transportation impacts. The results indicate that the use of IBPs to supplement virgin aggregate on a regional level has the potential of reducing impacts related to energy use, global warming potential, and emissions of nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), PM10 (particulate matter—10 microns), mercury (Hg), and lead (Pb). Regional management of industrial by‐products would allow for the incorporation of these materials into the industrial ecology of a region and reduce impacts from the disposal of the IBP materials and the extraction of virgin materials and minimize the impacts from transportation. The combination of reduced economic and environmental costs provides a strong argument for state transportation agencies to develop symbiotic relationships with large IBP producers in their regions to minimize impacts associated with roadway construction and maintenance—with the additional benefit of improved management of these materials.  相似文献   

13.
There is ongoing debate concerning the possible environmental and human health impacts of growing genetically modified (GM) crops. Here, we report the results of a life-cycle assessment (LCA) comparing the environmental and human health impacts of conventional sugar beet growing regimes in the UK and Germany with those that might be expected if GM herbicide-tolerant (to glyphosate) sugar beet is commercialized. The results presented for a number of environmental and human health impact categories suggest that growing the GM herbicide-tolerant crop would be less harmful to the environment and human health than growing the conventional crop, largely due to lower emissions from herbicide manufacture, transport and field operations. Emissions contributing to negative environmental impacts, such as global warming, ozone depletion, ecotoxicity of water and acidification and nutrification of soil and water, were much lower for the herbicide-tolerant crop than for the conventional crop. Emissions contributing to summer smog, toxic particulate matter and carcinogenicity, which have negative human health impacts, were also substantially lower for the herbicide-tolerant crop. The environmental and human health impacts of growing GM crops need to be assessed on a case-by-case basis using a holistic approach. LCA is a valuable technique for helping to undertake such assessments.  相似文献   

14.
Wooden and plastic pallets are used extensively in global trade to transport finished goods and products. This article compares the life cycle performance of treated wooden and plastic pallets through a detailed cradle‐to‐grave life cycle assessment (LCA), and conducts an analysis of the various phytosanitary treatments. The LCA investigates and evaluates the environmental impacts due to the resources consumed and emissions of the product throughout its life cycle. The environmental impacts of the pallets are compared on a one‐trip basis and a 100,000‐trips basis. Impact categories are chosen with respect to environmental concerns. The results show that on a one‐trip basis, wooden pallets with conventional and radio frequency (RF) heat treatment incur an overall carbon footprint of 71.8% and 80.3% lower, respectively, than plastic pallets during their life cycle; and in comparison with wooden pallets treated with methyl bromide fumigation, they incur 20% and 30% less overall carbon footprint. Theoretical calculations of the resource consumption and emissions of RF treatment of pallets suggest that dielectric technology may provide a lower‐carbon alternative to both current ISPM 15‐approved treatments and to plastic pallets. Methyl bromide fumigation (15.95 kg CO2 equivalent [eq.]) has a larger carbon footprint than conventional heat treatment (12.69 kg CO2 eq.) of pallets. For the 100,000‐trips basis, the differences are even more significant. The results recommend that wooden pallets are more environmentally friendly than plastic pallets, and conventional and RF heat treatment for wooden pallets is more sustainable than methyl bromide fumigation treatment.  相似文献   

15.
Life cycle assessment practitioners struggle to accurately allocate environmental burdens of metals recycling, including the temporal dimension of environmental impacts. We analyze four approaches for calculating aluminum greenhouse gas emissions: the recycled content (RC) or cut‐off approach, which assumes that demand for recycled content displaces primary production; end‐of‐life recycling (EOLR), which assumes that postuse recycling displaces primary production; market‐based (MB) approaches, which estimate changes in supply and demand using price elasticities; and value‐corrected substitution (VCS), which allocates impact based on price differences between primary and recycled material. Our analysis suggests that applications of the VCS approach do not adequately account for the changing scrap to virgin material price ratio over time, whereas MB approaches do not address stock accumulation and depletion. The EOLR and RC approaches were analyzed using two case studies: U.S. aluminum beverage cans and vehicle engine blocks. These approaches produced similar results for beverage cans, which have a closed material loop system and a short product life. With longer product lifetimes, as noted with the engine blocks, the magnitude and timing of the emissions differs greatly between the RC and EOLR approaches. The EOLR approach indicates increased impacts at the time of production, offset by negative impacts in future years, whereas the RC approach assumes benefits to increased recycled content at the time of production. For vehicle engine blocks, emissions using EOLR are 140% higher than with RC. Results are highly sensitive to recycled content and future recycling rates, and the choice of allocation methods can have significant implications for life cycle studies.  相似文献   

16.
This study presents the life cycle assessment of electricity generation from straw bales and pellets. Straw is the most abundant biomass residue in Europe and its use for energy purposes is promoted on the premise of high greenhouse gas savings. This assumption has delayed the study of sustainability of straw‐fired systems on a broader sense and the literature on the topic is almost absent. This study uses data from specific literature and emissions inventories to model a number of straw pathways. The plant modeled is a medium‐scale straw‐fired power plant of 50 MWth capacity. The results show that electricity from straw‐fired power plants can indeed realize high greenhouse gas savings compared both with existing coal plants and with the European electricity mix. The savings are in the range 70–94%. The influence of the geographical origin of straw is analyzed by using datasets for the cultivation of wheat in five different European countries. The highest emissions are recorded for the case of straw from Spain due to the small yields, whereas cultivation processes in United Kingdom and the Netherlands show high environmental impacts due to the high level of fertilization. Other environmental impacts are evaluated, such as acidification potential, eutrophication, particulate matter emissions, and photochemical ozone formation. The bioenergy system scores worse than the current European electricity mix for all the categories. However, it is important to notice that in Spain and United Kingdom the straw system shows lower impacts compared with the local average coal electricity. Finally, the study investigates the ‘break‐even’ distance at which the higher emissions from the pellets production are paid off by the saved emissions in their transport compared with the bales. The results show that no reasonable break‐even distance exists for road transport, whereas advantages for pellets are evident in any configuration for transoceanic transport.  相似文献   

17.
Purpose

The purpose of this study is to provide an integrated method to identify the resource consumption, environmental emission, and economic cost for mechanical product manufacturing from economic and ecological dimensions and ultimately to provide theoretical and data support of energy conservation and emission reduction for mechanical product manufacturing.

Methods

The applied research methods include environmental life cycle assessment (LCA) and life cycle cost (LCC). In life cycle environmental assessment, the inventory data are referred from Chinese Life Cycle Database and midpoint approach and EDIP2003 and CML2001 models of life cycle impact assessment (LCIA) are selected. In life cycle cost assessment, three cost categories are considered. The proposed environment and cost assessment method is based on the theory of social willingness to pay for potential environmental impacts. With the WD615 Steyr engine as a case, life cycle environment and cost are analyzed and evaluated.

Results and discussion

The case study indicates that, in different life cycle phases, the trend of cost result is generally similar to the environmental impacts; the largest proportion of cost and environmental impact happened in the two phases of “material production” and “component manufacturing” and the smallest proportion in “material transport” and “product assembly.” The environmental impact category of Chinese resource depletion potential (CRDP) accounted for the largest proportion, followed by global warming potential (GWP) and photochemical ozone creation potential (POCP), whereas the impacts of eutrophication potential (EP) and acidification potential (AP) are the smallest. The life cycle “conventional cost” accounted for almost all the highest percentage in each phase (except “material transport” phase), which is more than 80% of the total cost. The “environmental cost” and “possible cost” in each phase are relatively close, and the proportion of which is far below the “conventional cost.”

Conclusions

The proposed method enhanced the conventional LCA. The case results indicate that, in a life cycle framework, the environment and cost analysis results could support each other, and focusing on the environment and cost analysis for mechanical product manufacturing will contribute to a more comprehensive eco-efficiency assessment. Further research on the life cycle can be extended to phases of “early design,” “product use,” and “final disposal.” Other LCIA models and endpoint indicators are advocated for this environmental assessment. Environmental cost can also be further investigated, and the relevant social willingness to pay for more environmental emissions is advocated to be increased.

  相似文献   

18.
Greenhouse vegetable production plays a vital role in providing year‐round fresh vegetables to global markets, achieving higher yields, and using less water than open‐field systems, but at the expense of increased energy demand. This study examines the life cycle environmental and economic impacts of integrating semitransparent organic photovoltaics (OPVs) into greenhouse designs. We employ life cycle assessment to analyze six environmental impacts associated with producing greenhouse‐grown tomatoes in a Solar PoweRed INtegrated Greenhouse (SPRING) compared to conventional greenhouses with and without an adjacent solar photovoltaic array, across three distinct locations. The SPRING design produces significant reductions in environmental impacts, particularly in regions with high solar insolation and electricity‐intensive energy demands. For example, in Arizona, global warming potential values for a conventional, adjacent PV and SPRING greenhouse are found to be 3.71, 2.38, and 2.36 kg CO2 eq/kg tomato, respectively. Compared to a conventional greenhouse, the SPRING design may increase life cycle environmental burdens in colder regions because the shading effect of OPV increases heating demands. Our analysis shows that SPRING designs must maintain crop yields at levels similar to conventional greenhouses in order to be economically competitive. Assuming consistent crop yields, uncertainty analysis shows average net present cost of production across Arizona to be $3.43, $3.38, and $3.64 per kg of tomato for the conventional, adjacent PV and SPRING system, respectively.  相似文献   

19.
Zinc oxide (ZnO) polycrystalline ceramics are the focal point of lightning arrester technology. These semiconductor materials are able to switch rapidly from high to low impedance while handling large amounts of electrical energy. Since the early 1970s, considerable efforts have been made to improve the specific energy absorption capacity and device reliability of such components. This document describes a case study carried out on the life cycle impacts of three different designs of electroceramics made of ZnO. Results show that the best design involves decreasing the diameter while maintaining the thickness of the compound. Of the production, transport, use, and end‐of‐life phases, the use phase is found to contribute by far the most to environmental impacts, with leakage currents in the 10?6 ampere range. The next‐largest impacts come in the transport and production stages. Sensitivity analysis shows that impacts associated with the production stage originate from ZnO production and are related to the by‐products (heavy metals) of zinc metallurgy.  相似文献   

20.
The Internet leads to material and energy consumption as well as various environmental impacts on both the regional and global scale. Yet, assessments of the Internet's energy consumption and resulting greenhouse gas emissions are still rare, and assessments of material flows and further environmental impacts are virtually non‐existent. This article investigates material flows, the direct energy consumption during the use phase, as well as environmental impacts linked to the service, “Internet in Switzerland.” In our model, the service, Internet in Switzerland, is divided into various Internet participant categories. All devices used to access or provide Internet services are merged in a limited number of equipment families and, as such, included in an inventory of the existing infrastructure (stock). Based on this inventory, a material flow analysis (MFA) is performed, which includes the current stock as well as flows resulting from growth and disposal. The direct energy consumption for the operation of the infrastructure is quantified. Environmental impacts are calculated with a life cycle assessment approach, using the ecoinvent database and the software, SimaPro, applying four different methods. The MFA results in a 2009 stock of 98,100 tonnes. Approximately 4,130 gigawatt hours per year, or 7% of the total Swiss electricity consumption, were used in 2009 to operate the Swiss infrastructure. The environmental impacts caused during the production and use phases vary significantly depending on the assessment method chosen. The disposal phase had mainly positive impacts as a result of material recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号