首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guaiacum sanctum and Guaiacum coulteri are long‐lived Mesoamerican timber tree species heavily exploited throughout their range and considered to be at risk of extinction. Both species are included on the IUCN Red List and on CITES Appendix II, but there has been no formal assessment of the conservation status of either species. We used ecological niche modeling and rapid assessments of local density and population size structure to provide such evaluations. For the year 2000, we estimated geographic range sizes for G. sanctum and G. coulteri of 95,422 and 130,973 km2, respectively. The main core remaining habitat for G. sanctum occurs in Campeche State (Yucatan Peninsula), where populations exhibit high adult abundance and profuse regeneration. Several areas along the Mexican Pacific coast remain with suitable habitat for G. coulteri. Guaiacum coulteri is at greater risk as only 1.3 percent of its current habitat is protected, which contrasts with the 13.2 percent of current habitat protected for G. sanctum. We projected that available habitat for G. sanctum and G. coulteri will decline by a further 30–50 percent by 2020 if estimated habitat loss rates continue. We suggest that under the IUCN criteria, the conservation status of G. sanctum and G. coulteri should be updated to near threatened and vulnerable, respectively. Additionally, we conclude that the amount of protected habitat needs to be increased to safeguard both species. Our study provides a quantitative basis for updating the conservation status of both species and illustrates an assessment framework that could be applied to other threatened tree species.  相似文献   

2.
In harvested forests, the bird community is largely determined by stand structure, which itself is determined by forestry practices. This study aimed to identify habitat variables determining the presence of Corsican Nuthatch Sitta whiteheadi – a threatened island endemic – in harvested Corsican Pine Pinus nigra laricio woods, with the aim of mitigating the impact of timber harvest on the bird. Comparison of occupied and unoccupied plots showed that this bird is found mostly in pure Corsican Pine stands, and is absent when more than 50% of trees are not this species. Nests were built in decaying pine snags between 20 and 100 cm diameter at breast height (dbh), but birds avoided stands with live pines < 70 cm dbh, and selected stands with pines > 80 cm dbh. Conservation of Corsican Nuthatch therefore depends on maintaining harvest rotations of more than 200 years, reducing the size of felling coupes in clear‐cutting systems or, preferably, practising selective cutting, maintaining a sufficient density of old trees and snags, and checking the encroachment of other tree species into Corsican Pine stands.  相似文献   

3.
Understanding plant species diversity patterns and distributions is critical for conserving and sustainably managing tropical rain forests of high conservation value. We analyzed the alpha‐diversity, species abundance distributions, and relative ecological importance of woody species in the Budongo Forest, a remnant forest of the Albertine Rift in Uganda. In 32 0.5‐ha plots, we recorded 269 species in 171 genera and 51 families with stems of ≥2.0 cm in diameter at breast height (dbh). There were 53 more species with stems of ≥2.0 cm dbh than with stems of ≥10 cm dbh, of which 33 were treelets and 20 were multi‐stemmed shrubs. For both minimum stem diameter cut‐offs (i.e., ≥2 cm dbh vs. ≥10 cm dbh), the Fabaceae, Euphorbiaceae, Ulmaceae, and Meliaceae families and the species Cynometra alexandri, Lasiodiscus mildbraedii, and Celtis mildbraedii had the highest relative ecological importance. The relative ecological importance of some species and families changed greatly with the minimum stem diameter measured. Alpha‐diversity, species richness, and species abundance distributions varied across historical management practice types, forest community types, and as a function of minimum stem diameter. Species richness and Shannon–Weiner diversity index were greater for species with stems of ≥2.0 cm dbh than of ≥10 cm dbh. The decrease in species evenness with an increasing number of plots was accompanied by an increase in species richness for trees of both minimum diameters. This forest is characterized by a small number of abundant species and a relatively large proportion of infrequent species, many of which are sparsely distributed and with restricted habitats. We recommend lowering the minimum stem diameter measured for woody species diversity studies in tropical forests from 10 cm dbh to 2 cm dbh to include a larger proportion of the species pool.  相似文献   

4.
Tropical forests store large amounts of carbon and high biodiversity, but are being degraded at alarming rates. The emerging global Forest and Landscape Restoration (FLR) agenda seeks to limit global climate change by removing carbon dioxide from the atmosphere through the growth of trees. In doing so, it may also protect biodiversity as a free cobenefit, which is vital given the massive shortfall in funding for biodiversity conservation. We investigated whether natural forest regeneration on abandoned pastureland offers such cobenefits, focusing for the first time on the recovery of taxonomic diversity (TD), phylogenetic diversity (PD) and functional diversity (FD) of trees, including the recovery of threatened and endemic species richness, within isolated secondary forest (SF) fragments. We focused on the globally threatened Brazilian Atlantic Forest, where commitments have been made to restore 1 million hectares under FLR. Three decades after land abandonment, regenerating forests had recovered ~20% (72 Mg/ha) of the above‐ground carbon stocks of a primary forest (PF), with cattle pasture containing just 3% of stocks relative to PFs. Over this period, SF recovered ~76% of TD, 84% of PD and 96% of FD found within PFs. In addition, SFs had on average recovered 65% of threatened and ~30% of endemic species richness of primary Atlantic forest. Finally, we find positive relationships between carbon stock and tree diversity recovery. Our results emphasize that SF fragments offer cobenefits under FLR and other carbon‐based payments for ecosystem service schemes (e.g. carbon enhancements under REDD+). They also indicate that even isolated patches of SF could help to mitigate climate change and the biodiversity extinction crisis by recovering species of high conservation concern and improving landscape connectivity.  相似文献   

5.
Tropical trees are generally long-lived making it difficult to assess the long-term effects of habitat fragmentation on genetic diversity. Maintenance of genetic diversity in fragmented landscapes is largely dependent on the species’ mating system and the degree of genetic connectivity (seed and pollen flow) among fragments. Currently, these parameters are largely unknown for many endangered tropical tree species. Additionally, landscape fragmentation may isolate tropical tree populations from larger, more continuous populations. The role of isolated individuals in pollen transfer within and between remnant populations is not clear. In this study, we estimate the mating system and pollen flow patterns in continuous and remnant populations of the endangered tropical tree Guaiacum sanctum (Zygophyllaceae). Fractional paternity analyses were used to estimate average gene flow distances between fragmented remnant populations and the siring success of an intermediately located, but isolated individual. In these populations, G. sanctum is a mixed-mating species (t m = 0.72 − 0.95) whose pollen is transported over large distances (>4 km). An isolated tree may have functioned as a stepping-stone between two clusters of individuals, assisting long-distance pollen movement. This individual also sired a disproportionately high number of seeds (13.9%), and is thus an important component of the reproductive success of these populations, thus rejecting Janzen’s “living-dead” hypothesis. The high levels of genetic diversity maintained as a consequence of long-distance pollen-flow suggest that this endangered species may have the potential for future adaptation and population expansion if suitable habitats become available.  相似文献   

6.
Standing dead trees (or snags) are an important component of forest ecosystems, especially for tree cavity‐nesting vertebrate species, but their prevalence in South African forests remains under studied. Consequently, we investigated forest structure, and the presence and abundance of snags in six southern mistbelt forests in the Eastern Cape, South Africa. These forests have had varying levels of timber extraction over the past 150 years or more. We found snags were relatively rare in all six forests (<4.3% of trees sampled). Mean diameter at breast height (dbh) of snags ranged from 52 to 82 cm across the forests, with smaller snags in Kologha Forest and larger snags in Tyume Forest. A bimodal distribution of snag successional stages was found, with frequencies peaking at early and late stages, and few in the intermediate stages. Tree species diversity in the forests was relatively low (twelve–nineteen species across forests; only 28 species in total). There was no significant difference in dbh of trees between forests, with most occurring in the 20–29‐cm dbh size class. Future studies are required to identify trees that most likely support suitable cavities for tree cavity‐nesting bird species, and to determine cavity‐nester assemblage requirements in southern African forests.  相似文献   

7.
Aim To determine whether different abundances of introduced species of Cinchona (Rubiaceae) affect species composition and facilitate species richness in managed tropical forests, to test whether any facilitative effects on understorey species depend on forest type, and to investigate whether facilitative effects can be attributed to the ‘substitutive facilitation model’. Location Makawao Forest Reserve on Maui, Hawai’i, USA. Methods Cinchona species (Cinchona pubescens and Cinchona calisaya) were mapped within various forest types. In three forest types (ageing Eucalyptus and Pinus plantations, and near‐natural Acacia koa forests), we analysed environmental parameters (e.g. canopy cover, litter cover, pH value and soil depth) and the species composition of Cinchona‐invaded and non‐invaded plots; data were compared based on Cinchona cover and forest types. Habitat modelling for several endemic species and tree ferns was carried out to test whether Cinchona cover is an important variable for the probability of occurrence of these endemics. Results Cinchona species have naturalized mainly in Eucalyptus and Pinus plantations and Acacia koa forests and here add an additional shrub layer. In contrast to other studies, we revealed facilitative effects of Cinchona on native species within all forest types. Species richness is about 20% higher in invaded plots than in non‐invaded plots, and these show a nearly 50% higher proportion of endemic species, including tree ferns. The proportion of endemics even increases with increasing Cinchona cover. For several endemics, Cinchona is found to be an important variable for the probability of occurrence, and the removal of Cinchona cover as an explanatory variable lowers the model fit. In addition to Cinchona, variables delineating vegetation structure and light availability have a strong effect on the model fit. Main conclusions In the structurally simplified Hawaiian forests studied, Cinchona facilitated endemic species in accordance with the ‘substitutive facilitation model’. This contrasts with the results of an earlier study in the naturally treeless Galápagos highlands, which revealed a sharp decrease in the abundance of endemics under Cinchona canopy. These results illustrate that, through the same structural change (addition of a vegetation layer), an invasive species may exert divergent effects across different ecosystem types. The facilitation of endemic understorey species by invasive tree species in managed forests leads to a dilemma in conservation but also to new perspectives for ecosystem restoration.  相似文献   

8.
Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire‐coping strategies among common dry forests plants: resisters (low fire‐induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post‐fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post‐fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited.  相似文献   

9.
Forecasting the impacts of climate change on species distribution has several implications for conservation. Plinia edulis is a rare and threatened tree species from Brazilian Atlantic Rainforest. In this study, we assessed the impact of global climate change on the distribution of P. edulis. Additionally, we evaluated the efficacy of the Brazilian protected network to conserve this species. Ecological niche models were built using the maximum entropy method based on occurrence records and environmental predictors. Models predicted a reduction of climatically suitable areas for P. edulis in all evaluated scenarios in the coming years. Furthermore, we observed that Brazilian protected areas (PAs) are ineffective to conserve this species. Given the fact that P. edulis is a promising tree species rarely found within Brazilian PAs and threatened by global climate change, we strongly recommend the cultivation of this multipurpose species in agroforestry systems, landscaping and homegardens in order to promote its conservation through sustainable use.  相似文献   

10.
Rain forests on Borneo support exceptional concentrations of endemic insect biodiversity, but many of these forest-dependent species are threatened by land-use change. Totally protected areas (TPAs) of forest are key for conserving biodiversity, and we examined the effectiveness of the current TPA network for conserving range-restricted butterflies in Sabah (Malaysian Borneo). We found that mean diurnal temperature range and precipitation of the wettest quarter of the year were the most important predictors of butterfly distributions (= 77 range-restricted species), and that species richness increased with elevation and aboveground forest carbon. On average across all species, TPAs were effective at conserving ~43% of species’ ranges, but encompassed only ~40% of areas with high species richness (i.e., containing at least 50% of our study species). The TPA network also included only 33%–40% of areas identified as high priority for conserving range-restricted species, as determined by a systematic conservation prioritization analysis. Hence, the current TPA network is reasonably effective at conserving range-restricted butterflies, although considerable areas of high species richness (6,565 km2) and high conservation priority (11,152–12,531 km2) are not currently protected. Sabah's remaining forests, and the range-restricted species they support, are under continued threat from agricultural expansion and urban development, and our study highlights important areas of rain forest that require enhanced protection.  相似文献   

11.
Anthropogenic forests, particularly conifer monocultures, today constitute a large proportion of Central European woodland. Conversion of such forest stands into abundantly structured mixed‐species woodland is within the focus of ecosystem restoration and is considered to affect forest biodiversity. Short‐lived tree species play an important role in such conversion processes and may serve as focal species. However, not much is known about their relationship with forest biodiversity. In this study, the short‐lived tree species, European mountain ash (Sorbus aucuparia L.), European white birch (Betula pendula Roth), Downy birch (B. pubescens Ehrh.), and Glossy buckthorn (Frangula alnus P. Mill.), commonly occurring throughout Central Europe, are investigated with regard to their relationship with plant diversity. The focus is on their occurrences in Scots pine (Pinus sylvestris L.)–dominated forests in the Northeast German lowlands. A significant increase in vascular plant diversity is revealed in stands with the selected species’ presence, in comparison to stands without them. Increase in plant species numbers is highest where the respective species occurs in the tree and/or shrub layer, compared with their presence only in the herb layer. For bryophyte species, there is a less strong inverse relationship. An analysis of different species groups, such as threatened, woody, and typical forest species of higher plants, reveals no decrease in species numbers in these groups if short‐lived tree species are present. It is concluded that short‐lived tree species can be indicators for plant diversity assessment within forest restoration processes. As to causal explanations, effects of differing site conditions, assessed by use of Ellenberg indicator values, are discussed as well as possible active effects of the tree species changing their environment.  相似文献   

12.
GUY DUTSON 《Ibis》2008,150(4):698-706
A new species of white‐eye, the Vanikoro White‐eye Zosterops gibbsi, is described from the island of Vanikoro (= Vanikolo) in the Santa Cruz Islands (= Temotu Province) within the Solomon Islands. It differs from the geographically closest white‐eye, the Santa Cruz White‐eye Zosterops sanctaecrucis, by a number of features including a much longer bill, and different leg‐ and eye‐ring colour. This is the second bird species endemic to Vanikoro; the neighbouring Nendo Island supports three endemic species. Although the conservation status of this species appears to be secure, the Santa Cruz Islands are very poorly known. Despite supporting several globally threatened species, the Islands at present are not protected by any conservation activity.  相似文献   

13.
Aim To test the potential to conserve rare dry forest tree and shrub species circa situm. Location Oaxaca, Mexico and Southern Honduras. Methods Local uses (timber, posts and firewood) of species were determined principally through semistructured interviews with 20 rural householders in each of four communities in Honduras and four in Oaxaca. Tree and shrub diversity inventories were carried out in a total of 227 forest patches and parcels of farmland in those eight communities. Species’ conservation priorities were determined using the star system of Hawthorne (1996) and IUCN listings. Results Despite a large number of useful species, remarkably few were also conservation priorities. Useful species were found to be substitutable as is illustrated by Bombacopsis quinata, Cordia alliodora, Guaiacum sanctum and G. coulteri. Conclusions In these areas, circa situm conservation is inhibited by the lack of species that are both rare and useful. Usefulness must be interpreted as a function of substitutability. Natural regeneration provides an abundance of diversity, farmers are unlikely to invest in the management of a species when suitable substitutes are freely available. The key to conserving rare species may be in maintaining or enhancing the value of the landscape elements in which they are found.  相似文献   

14.
The effects of reduced‐impact logging (RIL) on the regeneration of commercial tree species were investigated, as long‐term timber yields depend partly on the availability of seedlings in a managed forest. On four occasions during a 20‐month period in the Tapajós National Forest (Eastern Amazon, Brazil), seven commercial tree species were assessed as follows: the long‐lived pioneers Bagassa guianensis and Jacaranda copaia; the partially shade‐tolerant Hymenaea courbaril, Dipteryx odorata, and Carapa guianensis; and the totally shade‐tolerant Symphonia globulifera and Manilkara huberi. In 2439 10 × 10 m plots, all individuals < 20 cm diameter at breast height (dbh) were assessed over three intervals, before, during, and after the forest being logged. Before logging, the density of seedlings and saplings of the seven species did not change. Logged trees were spatially aggregated, with 9.2 percent of the plots being heavily impacted by logging. After logging, the recruitment rate increased more than the mortality rate, so that post‐harvesting densities of seedlings and saplings increased. The increase in density was concentrated in logged plots with more disturbances. It is concluded that post‐harvesting heterogeneity of micro‐environments created by RIL may be an important component to be taken into account for sustainable forest management and conservation of commercial species.  相似文献   

15.
  1. Short‐range endemic plants often have edaphic specializations that, with their restricted distributions, expose them to increased risk of anthropogenic extinction.
  2. Here, we present a modeling approach to understand habitat suitability for Ricinocarpos brevis R.J.F.Hend. & Mollemans (Euphorbiaceae), a threatened shrub confined to three isolated populations in the semi‐arid south‐west of Western Australia. The model is a maximum entropy species distribution projection constructed on the basis of physical soil characteristics and geomorphology data at approximately 25 m2 (1 arc‐second) resolution.
  3. The model predicts the species to occur on shallow, low bulk density soils that are located high in the landscape. The model shows high affinity (72.1% average likelihood of occurrence) for the known populations of R. brevis, as well as identifying likely locations that are not currently known to support the species. There was a strong relationship between the likelihood of R. brevis occurrence and soil moisture content that the model estimated at a depth of 20 cm.
  4. We advocate that our approach should be standardized using publicly available data to generate testable hypotheses for the distribution and conservation management of short‐range endemic plant species for all of continental Australia.
  相似文献   

16.
Wet‐sclerophyll forests are unique ecosystems that can transition to dry‐sclerophyll forests or to rainforests. Understanding of the dynamics of these forests for conservation is limited. We evaluated the long‐term succession of wet‐sclerophyll forest on World Heritage listed K'gari (Fraser Island)—the world's largest sand island. We recorded the presence and growth of tree species in three 0.4 hectare plots that had been subjected to selective logging, fire, and cyclone disturbance over 65 years, from 1952 to 2017. Irrespective of disturbance regimes, which varied between plots, rainforest trees recruited at much faster rates than the dominant wet‐sclerophyll forest trees, narrowly endemic species Syncarpia hillii and more common Lophostemon confertus. Syncarpia hillii did not recruit at the plot with the least disturbance and recruited only in low numbers at plots with more prominent disturbance regimes in the ≥10 cm at breast height size. Lophostemon confertus recruited at all plots but in much lower numbers than rainforest trees. Only five L. confertus were detected in the smallest size class (<10 cm diameter) in the 2017 survey. Overall, we find evidence that more pronounced disturbance regimes than those that have occurred over the past 65 years may be required to conserve this wet‐sclerophyll forest, as without intervention, transition to rainforest is a likely trajectory. Fire and other management tools should therefore be explored, in collaboration with Indigenous landowners, to ensure conservation of this wet‐sclerophyll forest.  相似文献   

17.
Tropical arid to semi‐arid ecosystems are nearly as diverse as more humid forests and occupy large parts of the tropics. In comparison, however, they are vastly understudied. For instance, fog precipitation alone supports a unique vegetation formation, locally termed lomas, on coastal mountains in the Peruvian desert. To effectively protect these highly endemic and threatened ecosystems, we must increase our understanding of their diversity patterns in relation to environmental factors. Consequently, we recorded all vascular species from 100 random 4 × 4 m plots on the fog‐exposed southern slope of the mountain Mongón. We used topographic and remotely sensed covariates in statistical models to generate spatial predictions of alpha diversity and plant species' distribution probabilities. Altitude was the most important predictor in all models and may represent fog moisture levels. Other significant covariates in the models most likely refer also to water availability but on a finer spatial scale. Additionally, model‐based clustering revealed five altitudinal vegetation zones. This study contributes to a better spatial understanding of the biodiversity and spatial arrangement of vegetation belts of the largely unknown but highly unique lomas formations. Furthermore, mapping species richness and plant species' distributions could support a long‐needed lomas strategic conservation scheme.  相似文献   

18.
The genus Glauconycteris Dobson, 1875 currently contains 12 species of butterfly bats, all endemic to sub‐Saharan Africa. Most species are rarely recorded, with half of the species known from less than six geographic localities. The taxonomic status of several species remains problematic. Here, we studied the systematics of butterfly bats using both morphological and molecular approaches. We examined 45 adult specimens for external anatomy and skull morphology, and investigated the phylogeny of Glauconycteris using DNA sequences from three mitochondrial genes and 116 individuals, which in addition to outgroup taxa, included nine of the twelve butterfly bat species currently recognized. Four additional nuclear genes were sequenced on a reduced sample of 69 individuals, covering the outgroup and Glauconycteris species. Our molecular results show that the genus Glauconycteris is monophyletic, and that it is the sister‐group of the Asian genus Hesperoptenus. Molecular dating estimates based on either Cytb or RAG2 data sets suggest that the ancestor of Glauconycteris migrated into Africa from Asia during the Tortonian age of the Late Miocene (11.6–7.2 Mya), while the basal diversification of the crown group occurred in Africa at around 6 ± 2 Mya. The species G. superba is found to be the sister‐group of G. variegata, questioning its placement in the recently described genus Niumbaha. The small species living in tropical rainforests constitute a robust clade, which contains three divergent lineages: (i) the “poensis” group, which is composed of G. poensis, G. alboguttata, G. argentata, and G. egeria; (ii) the “beatrix” group, which contains G. beatrix and G. curryae; and (iii) the “humeralis” group, which includes G. humeralis and a new species described herein. In the “poensis” group, G. egeria is found to be monophyletic in the nuclear tree, but polyphyletic in the mitochondrial tree. The reasons for this mito‐nuclear discordance are discussed.  相似文献   

19.
Summary   Lecomtedoxa plumosa Burgt (Sapotaceae), a new tree species from the southern part of Korup National Park in Cameroon, is described and illustrated. The flowers show the characteristics of the genus Lecomtedoxa: for example the staminodes are free and placed alternately to the stamens and corolla lobes. The leaves of the new species are clearly different from other Lecomtedoxa spp., but they look similar to the leaves of Gluema ivorensis, especially to those of the collections from Cameroon. In total 26 trees ≥ 10 cm dbh were found. The largest trees found were 36 m high and 74 cm dbh. The trees grow in primary rain forest, in clusters of up to 10 trees on 2 ha, mixed with many other tree species. The seed dispersal is ballistic. The conservation status of the species is assessed as Endangered, EN D.  相似文献   

20.
The introduced tree species Spathodea campanulata (Bignoniaceae) forms novel forests in Puerto Rico, these having emerged after the abandonment of fields in the mid‐20th century and resulting in forests with a new species composition. We assessed bryophyte species richness in these novel forests and sought correlations with geological substrate, past land use, forest edge and patch area, forest structure, elevation, microhabitat diversity, tree species richness, and microclimatic conditions. Transects were established (edge and forest interior) in nine moist forest patches dominated by Spathodea in north‐central Puerto Rico. These Spathodea forest patches ranged from 0.6 to 9 ha. ANOVA, Chi‐square, correlation, and cluster analyses were used in data analyses. We found 57 bryophyte species. There was a significant difference in bryophyte richness among patches. Those on karst exhibited highest bryophyte richness due to microhabitat diversity, past land use, and shorter hydroperiods. Alluvial sites scored lowest in bryophyte species richness, and forest structure was important for bryophyte communities on these sites. Significant differences in temperature, relative humidity, and light intensity were observed between edge and forest interior. These appeared important for establishing bryophyte species cover but not richness and composition. Microhabitat diversity, patch area, and forest age were more related to bryophyte species richness than elevation, exposed edge, and tree species richness, regardless of geologic substrate. Collectively, Spathodea patches were similar to mature forests on the Island with respect to bryophyte species richness and composition. Novel Spathodea forests have conservation value due to their habitat suitability for bryophyte communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号