首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
While wave‐mixed and stirred bag bioreactors are common devices for rapid, safe insect cell culture‐based production at liter‐scale, orbitally shaken disposable flasks are mainly used for screening studies at milliliter‐scale. In contrast to the two aforementioned bag bioreactor types, which can be operated with standard or disposable sensors, shaker flasks have not been instrumented until recently. The combination of 250 mL disposable shake flasks with PreSens's Shake Flask Reader enables both pH and dissolved oxygen to be measured, as well as allowing characterization of oxygen mass transfer. Volumetric oxygen transfer coefficients (kLa‐values) for PreSens 250 mL disposable shake flasks, which were determined for the first time in insect cell culture medium at varying culture volumes and shaker frequencies, ranged between 4.4 and 37.9/h. Moreover, it was demonstrated that online monitoring of dissolved oxygen in shake flasks is relevant for limitation‐free growth of insect cells up to high cell densities in batch mode (1.6×107 cells/mL) and for the efficient expression of an intracellular model protein.  相似文献   

2.
During the past decade, novel disposable cell culture vessels (generally referred to as Process Scouting Devices or PSDs) have become increasingly popular for laboratory scale studies and seed culture generation. However, the lack of engineering characterization and online monitoring tools for PSDs makes it difficult to elucidate their oxygen transfer capabilities. In this study, a mass transfer characterization (kLa) of sensor enabled static and rocking T‐flasks is presented and compared with other non‐instrumented PSDs such as CultiFlask 50®, spinner flasks, and SuperSpinner D 1000®. We have also developed a mass transfer empirical correlation that accounts for the contribution of convection and diffusion to the volumetric mass transfer coefficient (kLa) in rocking T‐flasks. We also carried out a scale‐down study at matched kLa between a rocking T75‐flask and a 10 L (2 L filling volume) wave bioreactor (Cultibag®) and we observed similar DO and pH profiles as well as maximum cell density and protein titer. However, in this scale‐down study, we also observed a negative correlation between cell growth and protein productivity between the rocking T‐flask and the wave bioreactor. We hypothesize that this negative correlation can be due to hydrodynamic stress difference between the rocking T‐flask and the Cultibag. As both cell culture devices share key similarities such as type of agitation (i.e., rocking), oxygen transfer capabilities (i.e., kLa) and disposability, we argue that rocking T‐flasks can be readily integrated with wave bioreactors, making the transition from research‐scale to manufacturing‐scale a seamless process. Biotechnol. Bioeng. 2012;109: 2295–2305. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Conversion of D‐xylose to xylitol by Candida boidinii NRRL Y‐17213 was studied under anaerobic and oxygen limited conditions by varying the oxygen transfer coefficient kLa. Shake flask experiments were used to provide the preliminary information required to perform experiments in a bioreactor. The yeast did not grow under fully anaerobic conditions, but anaerobic formations of xylitol, ethanol, ribitol, and glycerol were observed as well as D‐xylose assimilation of 11 %. In shake flasks, with an initial D‐xylose concentration of 50 g/L, an increase in kLa from 8 to 46 h–1 resulted in a faster growth, higher rate of substrate uptake and lower yields of products. The highest xylitol productivity (0.052 g/L h) was attained at kLa = 8 h–1. At kLa = 46 h–1, 98.6 % of D‐xylose was consumed and mainly converted to biomass. Using 130 g/L D‐xylose, kLa was varied in the fermenter from 26 to 78 h–1. The percentage of consumed D‐xylose increased from 31 % at kLa = 26 h–1 to 93–94 % at all other aeration levels. Biomass yield increased with kLa, whereas ethanol, ribitol, and glycerol yields exhibited an opposite dependence on the oxygenation level. The most favorable oxygen transfer coefficient for xylitol formation, in the fermenter, was kLa = 47 h–1 when its concentration (57.5 g/L) surpassed ethanol accumulation by 3.6‐fold, and the glycerol plus ribitol by 10‐fold. Concurrently, xylitol yield and productivity reached 0.45 g/g and 0.26 g/L h, respectively. The volumetric xylitol productivity was affected more by changes in the aeration than the corresponding yield.  相似文献   

4.
The dissolved oxygen concentration is a crucial parameter in aerobic bioprocesses due to the low solubility of oxygen in water. The present study describes a new method for determining the oxygen transfer rate (OTR) in shaken-culture systems based on the sodium sulfite method in combination with an electrochemical oxygen sensor. The method replaces the laborious titration of the remaining sulfite by an on-line detection of the end point of the reaction. This method is a two-step procedure that can be applied in arbitrary flasks that do not allow the insertion of electrodes. The method does not therefore depend on the type of vessel in which the OTR is detected. The concept is demonstrated by determination of the OTR for standard baffled 1-L shake flasks and for opaque Ultra Yield™ flasks. Under typical shaking conditions, kLa values in the standard baffled flasks reached values up to 220 h-1, whereas the kLa values of the Ultra Yield flasks were significantly higher (up to 422 h-1).  相似文献   

5.
The biodegradation of the sulfonated azo dyes, Acid Orange 7 (AO7) and Acid Red 88 (AR88), by a bacterial consortium isolated from water and soil samples obtained from sites receiving discharges from textile industries, was evaluated. For a better removal of azo dyes and their biodegradation byproducts, an aerobically operated two‐stage rectangular packed‐bed biofilm reactor (2S‐RPBR) was constructed. Because the consortium's metabolic activity is affected by oxygen, the effect of the interstitial air flow rate QGI on 2S‐RPBR's zonal values of the oxygen mass transfer coefficient kLa was estimated. In the operational conditions probed in the bioreactor, the kLa values varied from 3 to 60 h?1, which roughly correspond to volumetric oxygen transfer rates, dcL/dt, ranging from 20 to 375 mg O2 L?1h?1. Complete biodegradation of azo dyes was attained at loading rates BV,AZ up to 40 mg L?1d?1. At higher BV,AZ values (80 mg L?1 d?1), dye decolorization and biodegradation of the intermediaries 4‐amino‐naphthalenesulphonic acid (4‐ANS) and 1‐amino‐2‐naphthol (1‐A2N) was almost complete. However, a diminution in COD and TOC removal efficiencies was observed in correspondence to the 4‐aminobenzenesulfonic acid (4‐ABS) accumulation in the bioreactor. Although the oxygen transport rate improved the azo dye mineralization, the results suggest that the removal efficiency of azo dyes was affected by biofilm detachment at relatively high QGI and BV,AZ values. After 225 days of continuous operation of the 2S‐RFBR, eight bacterial strains were isolated from the biofilm attached to the porous support. The identified genera were: Arthrobacter, Variovorax, Agrococcus, Sphingomonas, Sphingopyxis, Methylobacterium, Mesorhizobium, and Microbacterium.  相似文献   

6.
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single‐use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large‐scale production and feasibility of meeting clinical‐grade standards. The current work evaluated the capacity of a single‐use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kLa) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h?1, respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7‐fold with a total cell number of 1.2 ± 0.2 × 109 cells L?1. In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single‐use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362–369, 2018  相似文献   

7.

Background

Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation.

Results

A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures.

Conclusion

The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/? 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.
  相似文献   

8.
Characterization of manufacturing processes is key to understanding the effects of process parameters on process performance and product quality. These studies are generally conducted using small‐scale model systems. Because of the importance of the results derived from these studies, the small‐scale model should be predictive of large scale. Typically, small‐scale bioreactors, which are considered superior to shake flasks in simulating large‐scale bioreactors, are used as the scale‐down models for characterizing mammalian cell culture processes. In this article, we describe a case study where a cell culture unit operation in bioreactors using one‐sided pH control and their satellites (small‐scale runs conducted using the same post‐inoculation cultures and nutrient feeds) in 3‐L bioreactors and shake flasks indicated that shake flasks mimicked the large‐scale performance better than 3‐L bioreactors. We detail here how multivariate analysis was used to make the pertinent assessment and to generate the hypothesis for refining the existing 3‐L scale‐down model. Relevant statistical techniques such as principal component analysis, partial least square, orthogonal partial least square, and discriminant analysis were used to identify the outliers and to determine the discriminatory variables responsible for performance differences at different scales. The resulting analysis, in combination with mass transfer principles, led to the hypothesis that observed similarities between 15,000‐L and shake flask runs, and differences between 15,000‐L and 3‐L runs, were due to pCO2 and pH values. This hypothesis was confirmed by changing the aeration strategy at 3‐L scale. By reducing the initial sparge rate in 3‐L bioreactor, process performance and product quality data moved closer to that of large scale. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1370–1380, 2015  相似文献   

9.
The green microalga Chlorella sp. TISTR 8990 was grown heterotrophically in the dark using various concentrations of a basal glucose medium with a carbon‐to‐nitrogen mass ratio of 29:1. The final biomass concentration and the rate of growth were highest in the fivefold concentrated basal glucose medium (25 g L?1 glucose, 2.5 g L?1 KNO3) in batch operations. Improving oxygen transfer in the culture by increasing the agitation rate and decreasing the culture volume in 500‐mL shake flasks improved growth and glucose utilization. A maximum biomass concentration of nearly 12 g L?1 was obtained within 4 days at 300 rpm, 30°C, with a glucose utilization of nearly 76% in batch culture. The total fatty acid (TFA) content of the biomass and the TFA productivity were 102 mg g?1 and 305 mg L?1 day?1, respectively. A repeated fed‐batch culture with four cycles of feeding with the fivefold concentrated medium in a 3‐L bioreactor was evaluated for biomass production. The total culture period was 11 days. A maximum biomass concentration of nearly 26 g L?1 was obtained with a TFA productivity of 223 mg L?1 day?1. The final biomass contained (w/w) 13.5% lipids, 20.8% protein and 17.2% starch. Of the fatty acids produced, 52% (w/w) were saturated, 41% were monounsaturated and 7% were polyunsaturated (PUFA). A low content of PUFA in TFA feedstock is required for producing high quality biodiesel. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1589–1600, 2017  相似文献   

10.
Experimentation in shaken microplate formats offers a potential platform technology for the rapid evaluation and optimization of cell culture conditions. Provided that cell growth and antibody production kinetics are comparable to those found in currently used shake flask systems then the microwell approach offers the possibility to obtain early process design data more cost effectively and with reduced material requirements. This work describes a detailed engineering characterization of liquid mixing and gas–liquid mass transfer in microwell systems and their impact on suspension cell cultures. For growth of murine hybridoma cells producing IgG1, 24‐well plates have been characterized in terms of energy dissipation (P/V) (via Computational Fluid Dynamics, CFD), fluid flow, mixing and oxygen transfer rate as a function of shaking frequency and liquid fill volume. Predicted kLa values varied between 1.3 and 29 h?1; liquid‐phase mixing time, quantified using iodine decolorization experiments, varied from 1.7 s to 3.5 h; while the predicted P/V ranged from 5 to 35 W m?3. CFD simulations of the shear rate predicted hydrodynamic forces will not be detrimental to cells. For hybridoma cultures however, high shaking speeds (>250 rpm) were shown to have a negative impact on cell growth, while a combination of low shaking speed and high well fill volume (120 rpm, 2,000 µL) resulted in oxygen limited conditions. Based on these findings a first engineering comparison of cell culture kinetics in microwell and shake flask formats was made at matched average energy dissipation rates. Cell growth kinetics and antibody titer were found to be similar in 24‐well microtiter plates and 250 mL shake flasks. Overall this work has demonstrated that cell culture performed in shaken microwell plates can provide data that is both reproducible and comparable to currently used shake flask systems while offering at least a 30‐fold decrease in scale of operation and material requirements. Linked with automation this provides a route towards the high throughput evaluation of robust cell lines under realistic suspension culture conditions. Biotechnol. Bioeng. 2010; 105: 260–275. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
12.
Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L?1 days?1, or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L?1.  相似文献   

13.
The shake flask is a very common and useful tool for the study of submerged fermentations on a small scale. However, the oxygen supply may easily become a limiting factor. A model for the aeration in shake flasks is presented that enables one to predict whether in the course of an experiment the oxygen supply is becoming a growth-limiting factor or not. The results of measurements of the transfer coefficient of a cotton plug and the oxygen mass-transfer coefficient kla are also given.  相似文献   

14.
15.
Aims: Phytase production by Sporotrichum thermophile in a cost‐effective cane molasses medium in submerged fermentation and its application in bread. Methods and Results: The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air‐lift fermenters. Among surfactants tested, Tweens (Tween‐20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X‐100 inhibited the enzyme production. The mould produced phytase optimally at aw 0·95, and it declined sharply below this aw value. The enzyme production was comparable in air‐lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca‐alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. Conclusions: The phytase production by S. thermophile was enhanced in the presence of Tween‐80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca‐alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high‐soluble phosphate. Significance and Impact of the Study: The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air‐lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid.  相似文献   

16.
Oxygen supply is one of the most critical process parameters in aerobic cultivations. To assure sufficient oxygen supply, shake flasks are usually used in combination with orbital shaking machines. In this study, a measurement technique for the dissolved oxygen tension (DOT) in shake flask cultures with viscosity changes is presented. The movement of the shaker table is monitored by means of a Hall effect sensor. For DOT measurements, infrared fluorescent oxygen-sensitive nanoparticles are added to the culture broth. The position of the rotating bulk liquid needs to be determined to assure measurements inside the liquid. The leading edge of the bulk liquid is detected based on the fluorescence signal intensity of the oxygen-sensitive nanoparticles. Furthermore, online information about the viscosity of the culture broth is acquired due to the detection of the position of the leading edge of the bulk liquid relative to the direction of the centrifugal force, as described by Sieben et al. (2019. Sci. Rep., 9, 8335). The DOT measurement is combined with a respiration activity monitoring system which allows for the determination of the oxygen transfer rate (OTR) in eight parallel shake flasks. Based on DOT and OTR, the volumetric oxygen transfer coefficient (kLa) is calculated during cultivation. The new system was successfully applied in cultivations of Escherichia coli, Bacillus licheniformis, and Xanthomonas campestris.  相似文献   

17.
SummarySelf-directing optimization was successfully employed to determine the optimal combination of engineering parameters, viz., pH, aeration rate and agitation rate, for extracellular ribonuclease production by Aspergillus niger SA-13-20 in a batch bioreactor. Maximal RNase production of 5.38 IU ml–1 was obtained at controlled pH of 2.33, aeration rate of 1.67 v/v/m and agitation rate of 850 rev/min. The effect of oxygen on the fermentation was also investigated. With increase in volumetric oxygen transfer coefficients (KLa), cell growth and RNase production first increased and then decreased. RNase production was further increased to 7.10 IU ml–1 and the fermentation time was shortened from 96 to 72 h by controlling dissolved oxygen concentration at 10% saturation by aerating oxygen after about 28 h of fermentation under the above optimal condition. The kinetic model showed that RNase production by A. niger SA-13-20 was growth-associated.  相似文献   

18.
Since their introduction in 2001 miniaturized bioreactor systems have made great advances in function and performance. In this article the dissolved oxygen (DO) transfer performance of submilliliter microbioreactors, and 1–10 mL minibioreactors was examined. Microbioreactors have reached kLa values of 460 h?1, and are offering instrumentation and some functionality comparable to production systems, but at high throughput screening volumes. Minibioreactors, aside from one 1,440 h?1 kLa system, have not offered as high rates of DO transfer, but have demonstrated superior integration with automated fluid handling systems. Microbioreactors have been typically limited to studies with E. coli, while minibioreactors have offered greater versatility in this regard. Further, mathematical relationships confirming the applicability of kLa measurements across all scales have been derived, and alternatives to fluorescence lifetime DO sensors have been evaluated. Finally, the influence on reactor performance of oxygen uptake rate (OUR), and the possibility of its real‐time measurement have been explored. Biotechnol. Bioeng. 2013; 110: 1005–1019. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Dictyostelium discoideum is a promising eukaryotic host for the expression of heterologous proteins requiring post‐translational modifications. However, the dilute nature of D. discoideum cell culture limits applications for high value proteins production. D. discoideum cells, entrapped in sodium cellulose sulfate/poly‐dimethyl‐diallyl‐ammonium chloride (NaCS‐PDMDAAC) capsules were used for biosynthesis of the heterologous protein, soluble human Fas ligand (hFasL). Semi‐continuous cultivations with capsules recycling were carried out in shake flasks. Also, a scaled‐up cultivation of immobilized D. discoideum for hFasL production in a customized vitreous airlift bioreactor was conducted. The results show that NaCS‐PDMDAAC capsules have desirable biophysical properties including biocompatibility with the D. discoideum cells and good mechanical stability throughout the duration of cultivation. A maximum cell density of 2.02 × 107 cells mL?1 (equivalent to a maximum cell density of 2.22 × 108 cells mL?1 in capsules) and a hFasL concentration of 130.40 μg L?1 (equivalent to a hFasL concentration of 1434.40 μg L?1 in capsules) were obtained in shake flask cultivation with capsules recycling. Also, a maximum cell density of 1.72 × 107cells mL?1 (equivalent to a maximum cell density of 1.89 × 108 cells mL?1 in capsules) and a hFasL concentration of 106.10 μg L?1 (equivalent to a hFasL concentration of 1167.10 μg L?1 in capsules) were obtained after ~170 h cultivation in the airlift bioreactor (with a working volume of 200 mL in a 315 mL bioreactor). As the article presents a premier work in the application of NaCS‐PDMDAAC immobilized D. discoideum cells for the production of hFasL, more work is required to further optimize the system to generate higher cell densities and hFasL titers for large‐scale applications. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:424–430, 2015  相似文献   

20.
In this research, the combined effects of polydimethylsiloxane (PDMS) and different conditions of oxygen volumetric mass transfer coefficient (kLa) on lipase production by Staphylococcus warneri EX17 were studied and optimized in bioreactor cultures. Raw glycerol from biodiesel synthesis was used as the sole carbon source. Full-factorial central composite design and the response surface methodology were employed for the experimental design and analysis of the results. The optimal polydimethylsiloxane concentration and mass coefficient transfer (kLa) were found to be 13.5% (v/v) and 181 h−1, respectively. Under these conditions, the maximal cell production obtained was 10.0 g/l, and the volumetric lipase activities of approximately 490 U/l, after 6 h of cultivation. These results are in close agreement with the model predictions. Results obtained in this work reveal the positive effects of PDMS on oxygen volumetric mass transfer coefficient (kLa) in the Staphylococcus warneri EX17 cultivation and lipase production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号