首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant–pollinator mutualisms are one of the several functional relationships that must be reinstated to ensure the long‐term success of habitat restoration projects. These mutualisms are unlikely to reinstate themselves until all of the resource requirements of pollinators have been met. By meeting these requirements, projects can improve their long‐term success. We hypothesized that pollinator assemblage and structure and stability of plant–pollinator networks depend both on aspects of the surrounding landscape and of the restoration effort itself. We predicted that pollinator species diversity and network stability would be negatively associated with distance from remnant habitat, but that local floral diversity might rescue pollinator diversity and network stability in locations distant from the remnant. We created plots of native prairie on a reclaimed strip mine in central Ohio, U.S.A. that ranged in floral diversity and isolation from the remnant habitat. We found that the pollinator diversity declined with distance from the remnant habitat. Furthermore, reduced pollinator diversity in low floral diversity plots far from the remnant habitat was associated with loss of network stability. High floral diversity, however, compensated for losses in pollinator diversity in plots far from the remnant habitat through the attraction of generalist pollinators. Generalist pollinators increased network connectance and plant‐niche overlap. As a result, network robustness of high floral diversity plots was independent of isolation. We conclude that the aspects of the restoration effort itself, such as floral community composition, can be successfully tailored to incorporate the restoration of pollinators and improve success given a particular landscape context.  相似文献   

2.
Nontarget species such as pollinators may be of great importance to the restoration process and the long‐term functioning of restored habitats, but little is known about how such groups respond to habitat restoration. I surveyed bee communities at five equal‐aged restored sites, paired with five reference sites (riparian remnants) along the Sacramento River, California, United States. Flower availability and bee visitation patterns were also measured to examine the restoration of pollination function. Restoration of structural vegetation allowed diverse and abundant native bee communities to establish at the restoration sites; however, the composition of these important pollinator communities was distinct from that in the remnant riparian sites. Differences did not arise primarily from differences in the composition of the flowering‐plant community; rather there must be other physical characteristics of the restored sites or differences in nesting site availability that led to the different pollinator communities. Because sites were spatially paired, the differences are unlikely to be driven by landscape context. Bee life‐history and other biological traits may partially explain the differences between bee communities at restored and remnant sites. Patterns of visitation to native plant species suggest that pollination function is restored along with pollinator abundance and richness; however, function may be less robust in restored habitats. An examination of interaction networks between bees and plant species found at both restored and remnant riparian sites showed less redundancy of pollinators visiting some plants at restored habitats.  相似文献   

3.
Large‐scale spatial variability in plant–pollinator communities (e.g. along geographic gradients, across different landscapes) is relatively well understood. However, we know much less about how these communities vary at small scales within a uniform landscape. Plants are sessile and highly sensitive to microhabitat conditions, whereas pollinators are highly mobile and, for the most part, display generalist feeding habits. Therefore, we expect plants to show greater spatial variability than pollinators. We analysed the spatial heterogeneity of a community of flowering plants and their pollinators in 40 plots across a 40‐km2 area within an uninterrupted Mediterranean scrubland. We recorded 3577 pollinator visits to 49 plant species. The pollinator community (170 species) was strongly dominated by honey bees (71.8% of the visits recorded). Flower and pollinator communities showed similar beta‐diversity, indicating that spatial variability was similar in the two groups. We used path analysis to establish the direct and indirect effects of flower community distribution and honey bee visitation rate (a measure of the use of floral resources by this species) on the spatial distribution of the pollinator community. Wild pollinator abundance was positively related to flower abundance. Wild pollinator visitation rate was negatively related to flower abundance, suggesting that floral resources were not limiting. Pollinator and flower richness were positively related. Pollinator species composition was weakly related to flower species composition, reflecting the generalist nature of flower–pollinator interactions and the opportunistic nature of pollinator flower choices. Honey bee visitation rate did not affect the distribution of the wild pollinator community. Overall, we show that, in spite of the apparent physiognomic uniformity, both flowers and pollinators display high levels of heterogeneity, resulting in a mosaic of idiosyncratic local communities. Our results provide a measure of the background of intrinsic heterogeneity within a uniform habitat, with potential consequences on low‐scale ecosystem function and microevolutionary patterns.  相似文献   

4.
The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant–pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant–pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant–pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant–pollinator network.  相似文献   

5.
One common goal of habitat restoration and reconstruction is to reinstate the biodiversity found at intact reference sites. However, few researchers have examined whether these practices reinstate communities of flower‐visiting insects. This is unfortunate, as anthropogenically mediated declines in flower visitors, including bees (the primary pollinators for most terrestrial ecosystems), beetles, flies, and butterflies, have been reported worldwide. Biodiversity declines may be especially severe in North America's tallgrass prairie, a once‐vast grassland that has experienced severe destruction and degradation due to agricultural conversion. As such, we assessed the structure of forb and flower‐visiting insect communities as a whole and two subsets of the flower visitor community—bees and phytophagous beetles—across five tallgrass prairie remnants and five reconstructed prairies (former crop fields) in Kansas from 2013 to 2015. Remnant prairies had significantly higher forb diversity and differed significantly in forb composition, compared to reconstructed prairies. Despite the dissimilarities in forb community structure, there were no differences in flower visitor diversity or abundance between remnants and reconstructed prairies. However, when considered separately, bee communities exhibited significantly greater variability in composition on reconstructed prairies, likely due to the abundance of generalist bee species visiting non‐native legumes at two reconstructed prairies. Our work provides evidence that prairie habitat reconstruction is a valuable tool for reestablishing flower‐visiting insect communities and also emphasizes the considerable role that non‐native species may play in structuring grassland plant–bee interactions.  相似文献   

6.
Ecosystem functionality is an increasingly important objective of ecological restoration. Despite this, a few studies have rigorously assessed reproductive functionality within restored plant populations, and it is largely assumed that pollinators follow restoration of plant communities—“build it and they will come.” Here, we applied an ecological genetic approach to determine the impact of spatial separation on mating in Banksia menziesii (Proteaceae), a dominant bird‐pollinated species of Banksia woodlands of Western Australia. All plants at three post‐mining restored sites (n = 72 [13 years old], n = 21 [8 years old], and n = 20 [9 years old]), as well as a sample from an adjacent natural reference site (n = 42), were genotyped at nine microsatellite loci. Seed set, mating system parameters, realized pollen dispersal through the assignment of paternity to seed, and avian pollinator species composition, abundance and behavior, were assessed. All patches displayed equivalent heterozygosity (He = 0.53–0.59) and very weak genetic divergence (FST ≤ 0.01). Seed of plants within restored sites showed complete outcrossing and relatively high seed set, 26% of which were sired by pollen donors located beyond the local patch. Similar abundance and movement of nectar‐feeding birds was observed in restored and natural sites, despite lower bird species diversity in the restored site, where a smaller, less aggressive species was dominant. Our results demonstrate the restitution of wide outcrossing in these restored Banksia patches within an active mine‐site, and suggest that restored bird‐pollinated Banksia populations are resilient to human impacts, due largely to their generalist pollinator requirements and highly‐mobile avian pollinators.  相似文献   

7.
Afforestation resulting from fire suppression, modified grazing, plantation establishment and climate change poses a threat to northern prairie ecosystems. Trees alter the composition and function of plant and soil fauna communities and can compromise the restoration of afforested prairies. To evaluate the hypothesis that legacies of afforestation persist in restored prairie communities and decrease the potential for restoration, we examined the composition, structure, and diversity of plant and seed bank communities along a 20 year chronosequence of plantation tree removal from a northern fescue prairie in Riding Mountain National Park, Manitoba, Canada. Tree removal increased the abundance of weedy species in the plant and seed bank communities of restored prairies and plant diversity peaked and declined over the 20 year period of passive restoration. As a result, time since tree removal and the encroachment of invasive species were key in explaining the composition of restored prairie communities. Low correlation between the species composition of plant and seed bank communities, including the complete absence of Festuca hallii in restored treatments, demonstrated that legacies of afforestation compromised the potential of seed banks to facilitate prairie restoration. We conclude that tree removal alone is insufficient for the restoration of northern fescue prairies and that, in the absence of active management, the persistence of low-diversity plant and seed bank communities constitutes an important legacy of afforestation and an important barrier to future restoration.  相似文献   

8.
Pollination webs have recently deepened our understanding of complex ecosystem functions and the susceptibility of biotic networks to anthropogenic disturbances. Extensive mutualistic networks from tropical species-rich communities, however, are extremely scarce. We present fully quantitative pollination webs of two plant–pollinator communities of natural heathland sites, one of which was in the process of being restored, on the oceanic island of Mauritius. The web interaction data cover a full flowering season from September 2003 to March 2004 and include all flowering plant and their pollinator species. Pollination webs at both sites were dominated by a few super-abundant, disproportionately well-connected species, and many rare and specialised species. The webs differed greatly in size, reflecting higher plant and pollinator species richness and abundance at the restored site. About one fifth of plant species at the smaller community received <3 visits. The main pollinators were insects from diverse taxonomic groups, while the few vertebrate pollinator species were abundant and highly linked. The difference in plant community composition between sites appeared to strongly affect the associated pollinator community and interactions with native plant species. Low visitation rate to introduced plant species suggested little indirect competition for pollinators with native plant species. Overall, our results indicated that the community structure was highly complex in comparison to temperate heathland communities. We discuss the observed differences in plant linkage and pollinator diversity and abundance between the sites with respect to habitat restoration management and its influence on pollination web structure and complexity. For habitat restoration to be successful in the long term, practitioners should aim to maintain structural diversity to support a species-rich and abundant pollinator assemblage which ensures native plant reproduction.  相似文献   

9.
Restoration efforts often focus on plants, but additionally require the establishment and long‐term persistence of diverse groups of nontarget organisms, such as bees, for important ecosystem functions and meeting restoration goals. We investigated long‐term patterns in the response of bees to habitat restoration by sampling bee communities along a 26‐year chronosequence of restored tallgrass prairie in north‐central Illinois, U.S.A. Specifically, we examined how bee communities changed over time since restoration in terms of (1) abundance and richness, (2) community composition, and (3) the two components of beta diversity, one‐to‐one species replacement, and changes in species richness. Bee abundance and raw richness increased with restoration age from the low level of the pre‐restoration (agricultural) sites to the target level of the remnant prairie within the first 2–3 years after restoration, and these high levels were maintained throughout the entire restoration chronosequence. Bee community composition of the youngest restored sites differed from that of prairie remnants, but 5–7 years post‐restoration the community composition of restored prairie converged with that of remnants. Landscape context, particularly nearby wooded land, was found to affect abundance, rarefied richness, and community composition. Partitioning overall beta diversity between sites into species replacement and richness effects revealed that the main driver of community change over time was the gradual accumulation of species, rather than one‐to‐one species replacement. At the spatial and temporal scales we studied, we conclude that prairie restoration efforts targeting plants also successfully restore bee communities.  相似文献   

10.
Native pollinators are increasingly needed on conventional farms yet rarely fostered via management. One solution is habitat restoration in marginal areas, but colonization may be constrained if resident pollinator richness is low or if restored areas fail to provide sufficient floral or nesting resources. We quantified restoration outcomes for native bees, and associated resources, on three conventional farms with forb‐grass prairie plantings on marginal areas of varying sizes, in a heavily farmed region of central North America. We tested bee abundance and richness in restored prairie versus the dominant habitats of the region—crops, forest remnants, and edges of fields and roads. Restored prairie supported 2× more species (95 of 119 total species) and 3× more bees (72% of captured individuals) compared to the other cover types. All richness and abundance differences among habitat types were associated with higher floral resources in restored prairie. Thirty percent of the bee species were unique to prairie, consistent with long‐distance dispersal but begging the question of origin given the absence of prairie regionally. Our results suggest that road and field edges may be the source, as these areas had more floral and nesting resources than forest or crop fields combined and supported 55% of all species despite covering only approximately 5% of the sampled farms. Habitat scarcity is not the only constraint on native bees in agricultural landscapes, with increasing concern over disease and chemicals. However, we observed that restored areas on marginal lands of conventional farms can support abundant and species‐rich populations of native bees.  相似文献   

11.
Insects provide essential ecological services in both the natural environment and in human-dominated habitats. Because pollinator declines associated with land use change have been reported across the globe, there is great concern that pollinators and the ecosystem services they provide will be negatively affected. This study examines the diversity and abundance of bee pollinators in grasslands in Boulder County, Colorado, USA. Over five years, 5,200 bees were collected in grassland plots with different levels of urbanization. Most of the difference in species composition among three levels of urbanization was due to rare species that may not have been discovered in all plots. Neither the number of species nor their abundance differed significantly among the plot types, although the trend indicated increasing diversity with increasing distance from urbanization. Most notably, measures of urbanization, such as the amount of pavement and development, were not correlated with diversity. The most important factor affecting bee abundance, particularly for ground-nesting bees, was grazing regime. Bee abundance also was positively related to the number of flowering plant species. Other studies of different insects (grasshoppers and butterflies) in these plots showed results similar to ours. In contrast, previous studies on song-birds, raptors, and rodents showed significant differences between urban edge and remote plots in terms of organism abundance and diversity. Together, these results suggest that factors other than the degree of urbanization are important in determining insect abundance and diversity.  相似文献   

12.
Habitat restoration is a key measure to counteract negative impacts on biodiversity from habitat loss and fragmentation. To assess success in restoring not only biodiversity, but also functionality of communities, we should take into account the re‐assembly of species trait composition across taxa. Attaining such functional restoration would depend on the landscape context, vegetation structure, and time since restoration. We assessed how trait composition of plant and pollinator (bee and hoverfly) communities differ between abandoned, restored (formerly abandoned) or continuously grazed (intact) semi‐natural pastures. In restored pastures, we also explored trait composition in relation to landscape context, vegetation structure, and pasture management history. Abandoned pastures differed from intact and restored pastures in trait composition of plant communities, and as expected, had lower abundances of species with traits associated with grazing adaptations. Further, plant trait composition in restored pastures became increasingly similar to that in intact pastures with increasing time since restoration. On the contrary, the trait composition of pollinator communities in both abandoned and restored pastures remained similar to intact pastures. The trait composition for both bees and hoverflies was influenced by flower abundance and, for bees, by connectivity to other intact grasslands in the landscape. The divergent responses across organism groups appeared to be mainly related to the limited dispersal ability and long individual life span in plants, the high mobility of pollinators, and the dependency of semi‐natural habitat for bees. Our results, encompassing restoration effects on trait composition for multiple taxa along a gradient in both time (time since restoration) and space (connectivity), reveal how interacting communities of plants and pollinators are shaped by different trait–environmental relationships. Complete functional restoration of pastures needs for more detailed assessments of both plants dispersal in time and of resources available within pollinator dispersal range.  相似文献   

13.
Habitat restoration to promote wild pollinator populations is becoming increasingly common in agricultural lands. Yet, little is known about how wild bees, globally the most important wild pollinators, use resources in restored habitats. We compared bee use of native and exotic plants in two types of restored native plant hedgerows: mature hedgerows (>10 years from establishment) designed for natural enemy enhancement and new hedgerows (≤2 years from establishment) designed to enhance bee populations. Bees were collected from flowers using timed aerial netting and flowering plant cover was estimated by species using cover classes. At mature hedgerow sites, wild bee abundance, richness, and diversity were greater on native plants than exotic plants. At new sites, where native plants were small and had limited floral display, abundance of bees was greater on native plants than exotic plants; but, controlling for floral cover, there was no difference in bee diversity and richness between the two plant types. At both mature and new hedgerows, wild bees preferred to forage from native plants than exotic plants. Honey bees, which were from managed colonies, also preferred native plants at mature hedgerow sites but exhibited no preference at new sites. Our study shows that wild bees, and managed bees in some cases, prefer to forage on native plants in hedgerows over co‐occurring weedy, exotic plants. Semi‐quantitative ranking identified which native plants were most preferred. Hedgerow restoration with native plants may help enhance wild bee abundance and diversity, and maintain honey bee health, in agricultural areas.  相似文献   

14.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

15.
Longleaf pine savannas are highly threatened, fire‐maintained ecosystems unique to the southeastern United States. Fire suppression and conversion to agriculture have strongly affected this ecosystem, altering overstory canopies, understory plant communities, and animal populations. Tree thinning to reinstate open canopies can benefit understory plant diversity, but effects on animal communities are less well understood. Moreover, agricultural land‐use legacies can have long‐lasting impacts on plant communities, but their effects on animal communities either alone or through interactions with restoration are unclear. Resolving these impacts is important due to the conservation potential of fire‐suppressed and post‐agricultural longleaf savannas. We evaluated how historical agricultural land use and canopy thinning affect the diversity and abundance of wild bees in longleaf pine savannas. We employed a replicated, large‐scale factorial block experiment in South Carolina, where canopy thinning was applied to longleaf pine savannas that were either post‐agricultural or remnant (no agricultural history). Bees were sampled using elevated bee bowls. In the second growing season after restoration, thinned plots supported a greater bee abundance and bee community richness. Additionally, restored plots had altered wild bee community composition when compared to unthinned plots, indicating that reduction of canopy cover by the thinning treatment best predicted wild bee diversity and composition. Conversely, we found little evidence for differences between sites with or without historical agricultural land use. Some abundant Lasioglossum species were the most sensitive to habitat changes. Our results highlight how restoration practices that reduce canopy cover in fire‐suppressed savannas can have rapid benefits for wild bee communities.  相似文献   

16.
Keystone species restoration, or the restoration of species whose effect on an ecosystem is much greater than their abundance would suggest, is a central justification for many wildlife reintroduction projects globally. Following restoration, plains bison (Bison bison L.) have been identified as a keystone species in the tallgrass prairie ecoregion, but we know of no research to document similar effects in the mixed‐grass prairie where restoration efforts are ongoing. This study addresses whether Northern Great Plains (NGP) mixed‐grass prairie plant communities exhibit traits consistent with four central keystone effects documented for bison in the tallgrass prairie. We collected species composition, diversity, abundance, bare ground cover, and plant height data in three treatments: where livestock (Bos taurus L.) continuously grazed, livestock were removed for 10 years, and bison have been introduced and resident for 10 years. We observed mixed support for bison acting as keystone species in this system. Supporting the keystone role of bison, we observed higher species richness and compositional heterogeneity (β‐diversity) in the bison treatment than either the livestock retention or livestock removal treatments. However, we observed comparable forb, bare ground, and plant height heterogeneity between bison‐restored sites and sites where livestock were retained, contradicting reported keystone effects in other systems. Our results suggest that after 10 years of being restored, bison partially fulfill their role as a keystone species in the mixed‐grass prairie, and we encourage continued long‐term data collection to evaluate their influence in the NGP.  相似文献   

17.
Production of biofuel feedstocks in agricultural landscapes will result in land use changes that may have major implications for arthropod-mediated ecosystem services such as pollination and pest suppression. By comparing the abundance and diversity of insect pollinators and generalist natural enemies in three model biofuel crops: corn, switchgrass, and mixed prairie, we tested the hypothesis that biofuel crops comprised of more diverse plant communities would support increased levels of beneficial insects. These three biofuel crops contained a diverse bee community comprised of 75 species. Overall, bees were three to four times more abundant in switchgrass and prairie than in corn, with members of the sweat bee (Halictidae) and small carpenter bee (Ceratina spp.) groups the most abundant. Switchgrass and prairie had significantly greater bee species richness than corn during the July sampling period. The natural enemy community at these sites was dominated by lady beetles (Coccinellidae), long-legged flies (Dolichopodidae), and hover flies (Syrphidae) which varied in their response to crop type. Coccinellids were generally most abundant in prairie and switchgrass, with the exception of the pollen feeding Coleomegilla maculata that was most abundant in corn. Several rare or declining coccinellid species were detected in prairie and switchgrass sites. Dolichopodidae were more abundant in prairie and switchgrass while Syrphidae showed no significant response to crop type. Our results indicate that beneficial insects generally responded positively to the increased vegetational diversity of prairie and switchgrass sites; however, when managed as a dedicated biofuel crop, plant and arthropod diversity in switchgrass may decrease. Our findings support the hypothesis that vegetationally diverse biofuel crops support higher abundance and diversity of beneficial insects. Future policy regarding the production of biofuel feedstocks should consider the ecosystem services that different biofuel crops may support in agricultural landscapes.  相似文献   

18.
A fundamental goal of restoration is the re-establishment of plant diversity representative of native vegetation. However, many prairie restorations or Conservation Reserve Program sites have been seeded with warm-season grasses, leading to grass-dominated, low-diversity restorations not representative of native grasslands. These dominant grasses are strongly mycotrophic, while many subordinate forb species appear to be less dependent on mycorrhizal symbiosis. Therefore, manipulating arbuscular mycorrhizal fungi (AMF) may be useful in promoting establishment and growth of forb species in grass-dominated prairie restorations. To assess the potential role of mycorrhizae in affecting the productivity and community composition of restored tallgrass prairie, we conducted a 4-year field experiment on an 8-year-old grassland restoration at the Konza Prairie in northeastern Kansas, USA. At the initiation of our study, seeds of 12 forb species varying in degree of mycorrhizal dependence were added to established grass-dominated plots. Replicate plots were treated bi-weekly with a soil drench of fungicide (Topsin-M®) over four growing seasons and compared to non-treated control plots to assess the role of AMF in affecting plant species composition, productivity, leaf tissue quality, and diversity in restored tallgrass prairie. Topsin applications successfully reduced mycorrhizal colonization of grass roots to approximately 60–80% relative to roots in control plots. Four years of mycorrhizal suppression reduced productivity of the dominant grasses and increased plant species richness and diversity. These results highlight the importance of mycorrhizae as mediators of plant productivity and community dynamics in restored tallgrass prairie and indicate that temporarily suppressing AMF decreases productivity of the dominant C4 grasses and allows for establishment of seeded forb species.  相似文献   

19.
Bees rely on floral pollen and nectar for food. Therefore, pollinator friendly plantings are often used to enrich habitats in bee conservation efforts. As part of these plantings, non‐native plants may provide valuable floral resources, but their effects on native bee communities have not been assessed in direct comparison with native pollinator friendly plantings. In this study, we performed a common garden experiment by seeding mixes of 20 native and 20 non‐native pollinator friendly plant species at separate neighboring plots at three sites in Maryland, USA, and recorded flower visitors for 2 years. A total of 3,744 bees (120 species) were collected. Bee abundance and species richness were either similar across plant types (midseason and for abundance also late season) or lower at native than at non‐native plots (early season and for richness also late season). The overall bee community composition differed significantly between native and non‐native plots, with 11 and 23 bee species being found exclusively at one plot type or the other, respectively. Additionally, some species were more abundant at native plant plots, while others were more abundant at non‐natives. Native plants hosted more specialized plant–bee visitation networks than non‐native plants. Three species out of the five most abundant bee species were more specialized when foraging on native plants than on non‐native plants. Overall, visitation networks were more specialized in the early season than in late seasons. Our findings suggest that non‐native plants can benefit native pollinators, but may alter foraging patterns, bee community assemblage, and bee–plant network structures.  相似文献   

20.
Invasive alien plant species are usually disliked due to their high pressure on native communities. However, their ecological effects on pollinators are complex: some species provide abundant floral resources, boosting the number of pollinators, while they often disrupt plant-pollinator interactions by outcompeting native plants. Our direct knowledge is mainly based on single-species studies, while understanding the mechanism of these complex ecological interactions needs multi-species field-based approaches. It is also imperative to clarify the pros and cons of invasive plants and drivers of invasion from the perspective of pollinators. We conducted a standard protocol-driven regional study in Central and Eastern Europe, comparing 6-7 invaded and non-invaded sites of 12 herbaceous invasive plant species. We sampled floral resources, bees, and hoverflies before and during the flowering of the invasive plants. We analysed the effects of plant invasion at the invasive plant species level and in combined analyses, and tested whether the life span (perennial vs. annual) and flowering time (early-, middle-, and late-flowering) of invasive plants affect the abundance, species richness, diversity and species composition of native plants and pollinators. The combined analyses showed lower abundance and species richness of flowering plants and pollinators before, and higher abundance of both during the flowering of invasive plants in invaded sites. However, invasive plants had significant species-specific effects. Perennial invasive plants had a stronger negative impact on floral resources and pollinators already before their flowering compared to annuals. Flowering time of invasive plants affected the pollinator guilds differently. We suggest that in certain critical time periods of the year, invasive plants might provide the dominant foraging resources for pollinators in an invaded ecosystem. But, they also often cause significant losses in native floral resources over the year. Instead of simple eradication, careful preparation and consideration might be needed during removal of invasive plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号