首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Australian waters are home to a number of vocal species of fish. Cataloguing the acoustic characteristics and temporal patterns of choruses and their locations can provide significant information for long-term monitoring of vocal fishes and their ecosystems. In coastal waters off Port Hedland, Western Australia, two seafloor positioned sea-noise loggers, located 21.5 km apart in 8 and 18 m of water, recorded for an 18-month period. Numerous sound sources were detected, including mooring and vessel noise, humpback whale song and a large variety of fish signal types. Seven fish choruses were identified, occurring predominantly between late spring and early autumn (wet season) and displaying energy from 50 Hz to >4 kHz. Many of these choruses exhibited acoustic characteristics similar to choruses previously reported elsewhere, for some of which the source species or families have been identified. Distinct diurnal patterns in the choruses were observed, associated with sunrise or sunset and in some cases, both. While choruses were predominantly recorded on different days, there were at total of 80 days when more than one chorus was present at the same site. Some pairs of choruses present on the same day exhibited various combinations of temporal and frequency partitioning, while others displayed predominant overlap in both spaces.  相似文献   

2.
The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that marine mammals might hear sound energy below the center (carrier) frequency that may be generated by transmitting short rectangular pulses. All three sounders were found to generate sound at frequencies below the center frequency and within the hearing range of some marine mammals, e.g. killer whales, false killer whales, beluga whales, Atlantic bottlenose dolphins, harbor porpoises, and others. The frequencies of these sub-harmonic sounds ranged from 90 to 130 kHz. These sounds were likely detectable by the animals over distances up to several hundred meters but were well below potentially harmful levels. The sounds generated by the sounders could potentially affect the behavior of marine mammals within fairly close proximity to the sources and therefore the exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered.  相似文献   

3.
Breeding choruses of Hyla crucifer and H. versicolor are loud enough to be audible to migrating birds up to at least 1 km from their source, both vertically and horizontally, provided that no large obstacles intervene. During May in south-eastern New York State sound pressure levels (A weighting) at altitudes of 200 to 965 m and slant ranges from the frogs of 225 to 1020 m varied from 28 to 52 dB SPL.  相似文献   

4.
A portable data logger controlled by a Tattletale 7 microcontroller was used to record humpback whale choruses during the 1998 humpback whale winter season in Hawaii. The data logger sampled the sounds for four minutes every half hour using a digitizing rate of 2 kHz, and the data were stored on a hard disk. The results between January and April showed a peak in the sound pressure level between mid-February and mid-March. This peak of approximately 120 dB re 1 μPa coincided with the peak in the number of whales sighted by aerial survey on 7 March 1998. The choruses had spectral peaks at 315 Hz and 630 Hz. Some of the sounds at 630 Hz were second harmonics of the 315 Hz peak and others were not. The data also indicated a diurnal pattern in the sound pressure level, with levels at night significantly louder than the daytime levels. The sound levels began to increase during sunset and remained relatively high until sunrise, when they progressively decreased to a minimum. The nighttime peak occurred within an hour before and after midnight, and the daytime minimum occurred between 1100 and 1500. That more humpback whales appear to sing at night may reflect a switch to sexual advertisement as the primary male mating strategy at this time. It may also indicate that daylight and vision play key roles in the formation of competitive groups. It is suggested that the relative number of humpback whales in a given locale may be estimated by monitoring changes in sound pressure levels.  相似文献   

5.
The representation of alternative conspecific acoustic signals in the responses of a pair of local interneurons of the bushcricket Tettigonia viridissima was studied with variation in intensity and the direction of sound signals. The results suggest that the auditory world of the bushcricket is rather sharply divided into two azimuthal hemispheres, with signals arriving from any direction within one hemisphere being predominantly represented in the discharge of neurons of this side of the auditory pathway. In addition, each pathway also selects for the most intense of several alternative sounds. A low-intensity signal at 45 dB sound pressure level is quite effective when presented alone, but completely suppressed when given simultaneously with another signal at 60 dB sound pressure level. In a series of intracellular experiments the synaptic nature of the intensity-dependent suppression of competitive signals was investigated in a number of interneurons. The underlying synaptic mechanism is based on a membrane hyperpolarisation with a time-constant in the order of 5–10 s. The significance of this mechanism for hearing in choruses, and for the evolution of acoustic signals and signalling behaviour is discussed. Accepted: 20 November 1999  相似文献   

6.
Male Saitis michaelseni Simon (Araneae: Salticidae) produce sounds during courtship which can be heard several metres away. Courting males stridulate on dead leaves and are positioned on the opposite side of the leaf from the female. The courtship display contains both visual and acoustic elements. Courtship consists of three phases. In the first two phases, the male stridulates, and in the third phase, in which he makes tactile contact with the female, he alternates bursts of stridulatory sound with bouts of percussive sound in which the first pair of legs strikes the substratum. Stridulation apparently results from the thickened bases of short hairs on the anterior part of the abdomen moving over two files on the posterior part of the carapace. This stridulatory mechanism has not been previously reported for salticid spiders. The frequency spectra and amplitude modulation patterns of sounds produced by stridulation and percussion are presented.  相似文献   

7.
During the reproductive season, male Hyla versicolor produce advertisement calls to attract females. Females exhibit phonotaxis and approach the individual callers, resulting in amplexus. For frogs that call from dense choruses, the extent to which and the range from which a male’s advertisement call within a chorus can be heard by a receptive female leading to phonotaxis is unclear. We investigated females’ responses to natural choruses in the field and found that they were attracted and showed directed orientation to breeding choruses at distances up to 100 m. To assess the role of acoustic cues in the directed orientation, we conducted acoustic playback experiments in the laboratory using conspecific call and noise as stimuli, as well as chorus sounds (that contained calls from a focal male) recorded at various distances, all played at naturalistic intensities. Using two response metrics (females’ normalized response times and their phonotaxis trajectories) we found that, unlike the field experiments, females oriented and were attracted to chorus sounds from 1 to 32 m only, but not from >32 m, or to band-limited noise. Possible reasons for the observed difference in phonotaxis behavior in the two experimental conditions were discussed.  相似文献   

8.
Soundscape Ecology is an emerging area of science that does not focus on the identification of species in the soundscape but attempts to characterize sounds by organizing them into those produced by biological organisms such as birds, amphibians, insects or mammals; physical environmental factors such as thunder, rainfall or wind; and sounds produced by human entities such as airplanes, automobiles or air conditioners. The soundscape changes throughout the day and throughout the seasons. The soundscape components that create the sound occur at different frequencies. A set of metrics termed soundscape power was computed and visualized to examine the patterns of daily and seasonal change in the soundscape.Automated recorders were used to record soundscape samples every half hour for one minute duration from six sites on an uninhabited island in Twin Lakes located near Cheboygan in Michigan's northern Lower Peninsula. Each recording was divided into 1 kHz frequency intervals and visualization tools were used to examine the soundscape power in each interval during 48 half-hour time segments from April–October for four consecutive years. Daily patterns of soundscape power change were also examined during the seven month sample period. To synthesize the data set, three dimensional contour plots were used to visualize day of the year (x), time of day (y) and soundscape power (z) for several frequency intervals. A further synthesis was developed to visualize soundscape change using a Normalized Difference Soundscape Index (NDSI) which is a ratio of low to high frequencies.The visualization of the soundscape revealed discrete patterns in the soundscape including striking changes in the time of the occurrence of dawn and dusk choruses. The patterns in the soundscape were remarkably similar over the four-year investigation. Soundscape power in the lower frequency examined (1–2 kHz) was a dominant feature of the soundscape at Twin Lakes and the low frequency soundscape power was negatively correlated with higher frequency sounds.The soundscape power metrics and the visualizations of the soundscape produced in this study should provide a means of rapidly synthesizing large numbers of recordings into meaningful patterns to examine soundscape change. This is especially useful because of the need to develop indices of ecological metrics based on soundscape attributes to assist resource managers in making decisions about ecosystem integrity. Visualization can also be of immense benefit to examine patterns in large soundscape time series data sets that can be produced by automated recording devices.  相似文献   

9.
Recently, musical sounds from pre-recorded orchestra sample libraries (OSL) have become indispensable in music production for the stage or popular charts. Surprisingly, it is unknown whether human listeners can identify sounds as stemming from real orchestras or OSLs. Thus, an internet-based experiment was conducted to investigate whether a classic orchestral work, produced with sounds from a state-of-the-art OSL, could be reliably discerned from a live orchestra recording of the piece. It could be shown that the entire sample of listeners (N = 602) on average identified the correct sound source at 72.5%. This rate slightly exceeded Alan Turing''s well-known upper threshold of 70% for a convincing, simulated performance. However, while sound experts tended to correctly identify the sound source, participants with lower listening expertise, who resembled the majority of music consumers, only achieved 68.6%. As non-expert listeners in the experiment were virtually unable to tell the real-life and OSL sounds apart, it is assumed that OSLs will become more common in music production for economic reasons.  相似文献   

10.
SOUND AND ITS SIGNIFICANCE FOR LABORATORY ANIMALS   总被引:1,自引:0,他引:1  
1. Several methods of varying accuracy have been used to assess what sounds small laboratory animals such as rodents are capable of hearing. Most rodents can detect sounds from 1000 Hz (the frequency of the Greenwich Time Signal) up to 100000 Hz, depending on the strain, with usually one or more commonly two peaks of sensitivity within this range. Dogs can detect sound most easily from 500 Hz to 55000 Hz, depending on the breed. 2. Rodents also produce sound signals as a behavioural response and for communication in a variety of situations. Ultrasonic calls in the range 22000–70000 Hz are the main communicating pathway during aggressive encounters, mating, and mothering. Similar calls have also been recorded from isolated animals associated with inactivity, rest and possibly even sleep. 3. Very loud sounds cause seizures in rats and mice, or can make them more susceptible to other sounds later in life. This effect is possible even when animals are fully anaesthetized. Sound tends to startle and reduce activity in several species of animal. Even offspring of mice that have been sound-stressed exhibit abnormal behaviour patterns. Sounds also elicit various responses in rats from increasing aggression to making them more tolerant to electric shocks. 4. Levels of sound above 100 dB are teratogenic in several species of animals and several hormonal, haematological and reproductive parameters are disturbed by sounds above 80 dB. When rats are chemically deafened the disturbance to their fertility disappears. Lipid metabolism is disrupted in rats when exposed to over 95 dB of sounds, leading to increases in plasma triglycerides. Atherosclerosis can be produced in rabbits by similar levels of sound. 5. It has also been shown in guinea pigs and cats that hearing damage is governed by the duration as well as the intensity of the sound and is irreversible. Work on chinchillas hs demonstrated that sounds above 95 dB lead to this injury, but that sounds of 80 dB have no permanent effect on hearing sensitivity.  相似文献   

11.
The characteristics of sounds produced by fishes are influenced by several factors such as size. The current study analyses factors affecting structural properties of acoustic signals produced by female croaking gouramis Trichopsis vittata during agonistic interactions. Female sounds (although seldom analysed separately from male sounds) can equally be used to investigate factors affecting the sound characteristics in fish. Sound structure, dominant frequency and sound pressure levels (SPL) were determined and correlated to body size and the order in which sounds were emitted. Croaking sounds consisted of series of single-pulsed or double-pulsed bursts, each burst produced by one pectoral fin. Main energies were concentrated between 1.3 and 1.5 kHz. The dominant frequency decreased with size, as did the percentage of single-pulsed bursts within croaking sounds. The SPL and the number of bursts within a sound were independent of size but decreased significantly with the order of their production. Thus, acoustic signals produced at the beginning of agonistic interactions were louder and consisted of more bursts than subsequent ones. Our data indicate that body size affects the dominant frequency and structure of sounds. The increase in the percentage of double-pulsed bursts with size may be due to stronger pectoral muscles in larger fish. In contrast, ongoing fights apparently result in muscle fatigue and subsequently in a decline in the number of bursts and SPL. The factor ‘order of sound production’ points to an intra-individual variability of sounds and should be considered in future studies.  相似文献   

12.
13.
ABSTRACT

Whales living within seismically active regions are subject to intense disturbances from strong sounds produced by earthquakes that can kill or injure individuals. Nishimura & Clark (1993) relate the possible effects of underwater earthquake noise levels in marine mammals, adducing that T-phase source signal level (10- to 30- Hz range) can exceed 200 dB re: 1 μPa at 1 m, for a magnitude 4–5 earthquake, sounds audible to fin whales which produce low frequency sounds of 16–20/25–44 Hz over 0.5–1s, typically of 183 dB re: 1 μPa at 1 m. Here we present the response of a fin whale to a 5.5 Richter scale earthquake that took place on 22 February 2005, in the Gulf of California. The whale covered 13 km in 26 min (mean speed = 30.2 km/h). We deduce that the sound heard by this whale might have triggered the costly energy expenditure of high speed swimming as a seismic-escape response. These observations support the hypothesis of Richardson et al. (1995) that cetaceans may flee from loud sounds before they are injured, when exposed to noise in excess of 140 dB re: 1 μPa 1 m.  相似文献   

14.
Aims: To identify ascomycetous yeasts recovered from sound and damaged grapes by the presence of honeydew or sour rot. Methods and Results: In sound grapes, the mean yeast counts ranged from 3·20 ± 1·04 log CFU g?1 to 5·87 ± 0·64 log CFU g?1. In honeydew grapes, the mean counts ranged from 3·88 ± 0·80 log CFU g?1 to 6·64 ± 0·77 log CFU g?1. In sour rot grapes counts varied between 6·34 ± 1·03 and 7·68 ± 0·38 logCFU g?1. Hanseniaspora uvarum was the most frequent species from sound samples. In both types of damage, the most frequent species were Candida vanderwaltii, H. uvarum and Zygoascus hellenicus. The latter species was recovered in high frequency because of the utilization of the selective medium DBDM (Dekkera/Brettanomyces differential medium). The scarce isolation frequency of the wine spoilage species Zygosaccharomyces bailii (in sour rotten grapes) and Zygosaccharomyces bisporus (in honeydew affected grapes) could only be demonstrated by the use of the selective medium ZDM (Zygosaccharomyces differential medium). Conclusions: The isolation of several species only from damaged grapes indicates that damage constituted the main factor determining yeast diversity. The utilization of selective media is required for eliciting the recovery of potentially wine spoilage species. Significance and Impact of the Study: The impact of damaged grapes in the yeast ecology of grapes has been underestimated.  相似文献   

15.
Male grass gobies show two alternative breeding tactics, territorial and sneaker, distinguished by body size and difference in ray elongation on the second dorsal fin. The larger males, with elongated fins, are territorial and emit sounds during courtship. Smaller males, without elongated fins, act as sneakers. Both large and small males produce sounds in the presence of a ripe female. Males produce a grunt, lasting about 300ms, made up of pulses repeated at a low rate (22–68pps). Pulse duration, number, and repetition rate, did not differ between the two male types, but dominant frequency and sound amplitude did. Dominant frequency had a strong, inverse relationship with body size, whereas sound amplitude showed a weak positive relation to body size. Male size, and not the particular reproductive male tactic employed, is the most important correlate of sound properties in this species.  相似文献   

16.

Background

Barn owls integrate spatial information across frequency channels to localize sounds in space.

Methodology/Principal Findings

We presented barn owls with synchronous sounds that contained different bands of frequencies (3–5 kHz and 7–9 kHz) from different locations in space. When the owls were confronted with the conflicting localization cues from two synchronous sounds of equal level, their orienting responses were dominated by one of the sounds: they oriented toward the location of the low frequency sound when the sources were separated in azimuth; in contrast, they oriented toward the location of the high frequency sound when the sources were separated in elevation. We identified neural correlates of this behavioral effect in the optic tectum (OT, superior colliculus in mammals), which contains a map of auditory space and is involved in generating orienting movements to sounds. We found that low frequency cues dominate the representation of sound azimuth in the OT space map, whereas high frequency cues dominate the representation of sound elevation.

Conclusions/Significance

We argue that the dominance hierarchy of localization cues reflects several factors: 1) the relative amplitude of the sound providing the cue, 2) the resolution with which the auditory system measures the value of a cue, and 3) the spatial ambiguity in interpreting the cue. These same factors may contribute to the relative weighting of sound localization cues in other species, including humans.  相似文献   

17.
This study investigated immediate effects of intense sound exposure associated with low‐frequency (170–320 Hz) or with mid‐frequency (2·8–3·8 kHz) sonars on caged rainbow trout Oncorhynchus mykiss, channel catfish Ictalurus punctatus and hybrid sunfish Lepomis sp. in Seneca Lake, New York, U.S.A. This study focused on potential effects on inner ear tissues using scanning electron microscopy and on non‐auditory tissues using gross and histopathology. Fishes were exposed to low‐frequency sounds for 324 or 628 s with a received peak signal level of 193 dB re 1 µPa (root mean square, rms) or to mid‐frequency sounds for 15 s with a received peak signal level of 210 dB re 1 µPa (rms). Although a variety of clinical observations from various tissues and organ systems were described, no exposure‐related pathologies were observed. This study represents the first investigation of the effects of high‐intensity sonar on fish tissues in vivo. Data from this study indicate that exposure to low and midfrequency sonars, as described in this report, might not have acute effects on fish tissues.  相似文献   

18.
The auditory responsiveness of a number of neurones in the meso- and metathoracic ganglia of the locust, Locusta migratoria, was found to change systematically during concomitant wind stimulation. Changes in responsiveness were of three kinds: a suppression of the response to low frequency sound (5 kHz), but an unchanged or increased response to high frequency (12 kHz) sound; an increased response to all sound; a decrease in the excitatory, and an increase in the inhibitory, components of a response to sound. Suppression of the response to low frequency sound was mediated by wind, rather than by the flight motor. Wind stimulation caused an increase in membrane conductance and concomitant depolarization in recorded neurones. Wind stimulation potentiated the spike response to a given depolarizing current, and the spike response to a high frequency sound, by about the same amount. The strongest wind-related input to interneuron 714 was via the metathoracic N6, which carries the axons of auditory receptors from the ear. The EPSP evoked in central neurones by electrical stimulation of metathoracic N6 was suppressed by wind stimulation, and by low frequency (5 kHz), but not high frequency (10 kHz), sound. This suppression disappeared when N6 was cut distally to the stimulating electrodes. Responses to low frequency (5 kHz), rather than high frequency (12 kHz), sounds could be suppressed by a second low frequency tone with an intensity above 50-55 dB SPL for a 5 kHz suppressing tone. Suppression of the electrically-evoked EPSP in neurone 714 was greatest at those sound frequencies represented maximally in the spectrum of the locust's wingbeat. It is concluded that the acoustic components of a wind stimulus are able to mediate both inhibition and excitation in the auditory pathway. By suppressing the responses to low frequency sounds, wind stimulation would effectively shift the frequency-response characteristics of central auditory neurones during flight.  相似文献   

19.
Can plants sense natural airborne sounds and respond to them rapidly? We show that Oenothera drummondii flowers, exposed to playback sound of a flying bee or to synthetic sound signals at similar frequencies, produce sweeter nectar within 3 min, potentially increasing the chances of cross pollination. We found that the flowers vibrated mechanically in response to these sounds, suggesting a plausible mechanism where the flower serves as an auditory sensory organ. Both the vibration and the nectar response were frequency‐specific: the flowers responded and vibrated to pollinator sounds, but not to higher frequency sound. Our results document for the first time that plants can rapidly respond to pollinator sounds in an ecologically relevant way. Potential implications include plant resource allocation, the evolution of flower shape and the evolution of pollinators sound. Finally, our results suggest that plants may be affected by other sounds as well, including anthropogenic ones.  相似文献   

20.
Some 1274 southern right whale sounds were randomly selected and each sound was described by 10 acoustic variables. Two hundred and fifty of these sounds were also ‘labelled’ by the activity, size and sexual composition o the group producing them. Principal components analysis was performed on all the sounds' variables (1274×10) and on the variables for a subset of 823 sounds referred to as calls. Results of the principal components analyses indicate that the sounds can be divided into three major classes: blow sounds, slaps, and calls; and that the repertoire of calls is a continuum with certain types more common than others. The distribution of the ‘labelled’ sounds in the principal components analyses patterns revealed general associations between whale activities and the types of sounds produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号