首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The coordination of animal growth and development requires adequate nutrients. During times of insufficient food, developmental progression is slowed and stored energy is utilized to ensure that cell and tissue survival are maintained. Here, we report our finding that the Gbb/BMP signaling pathway, known to play an important role in many developmental processes in both vertebrates and invertebrates, is critical in the Drosophila larval fat body for regulating energy homeostasis. Animals with mutations in the Drosophila BMP-5,7 orthologue, glass bottom boat (gbb), or in its signaling components, display phenotypes similar to nutrient-deprived and Tor mutant larvae. These phenotypes include a developmental delay with reduced overall growth, a transparent appearance, and altered total lipid, glucose and trehalose levels. We find that Gbb/BMP signaling is required in the larval fat body for maintaining proper metabolism, yet interestingly, following nutrient deprivation larvae in turn show a loss of BMP signaling in fat body cells indicating that Gbb/BMP signaling is a central player in homeostasis. Finally, despite strong phenotypic similarities between nutrient-compromised animals and gbb mutants, distinct differences are observed in the expression of a group of starvation responsive genes. Overall, our results implicate Gbb/BMP signaling as a new pathway critical for positive regulation of nutrient storage and energy homeostasis during development.  相似文献   

2.
Bone morphogenetic proteins (BMPs) perform a variety of functions during development. Considering a single BMP, what enables its multiple roles in tissues of varied sizes and shapes? What regulates the spatial distribution and activity patterns of the BMP in these different developmental contexts? Some BMP functions require controlling spread of the BMP morphogen, while others require formation of localized, high concentration peaks of BMP activity. Here we review work in Drosophila that describes spatial regulation of the BMP encoded by decapentaplegic (dpp) indifferent developmental contexts. We concentrate on extracellular modulation of BMP function and discuss the mechanisms that generate concentrated peaks of Dpp activity, subdivide territories of different activity levels or regulate spread of the Dpp morphogen from a point source. We compare these findings with data from vertebrates and non‐model organisms to discuss how changes in the regulation of Dpp distribution by extracellular modulators may lead to variability in dpp function in different species. genesis 49:698–718, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Aiguo Tian 《Fly》2017,11(4):297-302
Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.  相似文献   

4.
5.
6.
The decapentaplegic (dpp) gene in Drosophila is involved in multiple developmental processes, and is a highly conserved among various eukaryotic species, including Bombyx mori. Although the gene has well been characterized in Drosophila species the B. mori dpp has not yet been functionally analyzed. In this study, we analyzed the expression pattern of B. mori dpp in 12 different developmental days/stages (7 days for fifth instar larvae, 2 days for spinning stage, 2 days for pupal stages, and 1 day for adults) in both male and female silkworms using quantitative real‐time RT‐PCR (qRT‐PCR). mRNA expression of B. mori dpp was much higher in the female larvae up to the mid‐stage of the fifth instar compared with the corresponding male larvae. Similarly, dpp expression also was much higher in females during the eclosion period than that in the corresponding male pupae. During the embryonic stage, the expression level of the dpp gene was much higher compared to that of adult stage in both male and female silkworms. These results suggest that the B. mori dpp gene plays multiple roles in the developmental of B. mori.  相似文献   

7.
8.
We examined dpp expression patterns in the pulmonate snail Lymnaea stagnalis and analyzed the functions of dpp using the Dpp signal inhibitor dorsomorphin in order to understand developmental mechanisms and evolution of shell formation in gastropods. The dpp gene is expressed in the right half of the circular area around the shell gland at the trochophore stage and at the right-hand side of the mantle at the veliger stage in the dextral snails. Two types of shell malformations were observed when the Dpp signals were inhibited by dorsomorphin. When the embryos were treated with dorsomorphin at the 2-cell and blastula stages before the shell gland is formed, the juvenile shells grew imperfectly and were not mineralized. On the other hand, when treated at the trochophore and veliger stage after the shell gland formation, juvenile shells grew to show a cone-like form rather than a normal coiled form. These results indicated that dpp plays important roles in the formation and coiling of the shell in this gastropod species.  相似文献   

9.
The BMP pathway is essential for scaling of the presynaptic motoneuron arbor to the postsynaptic muscle cell at the Drosophila neuromuscular junction (NMJ). Genetic analyses indicate that the muscle is the BMP-sending cell and the motoneuron is the BMP-receiving cell. Nevertheless, it is unclear how this directionality is established as Glass bottom boat (Gbb), the known BMP ligand, is active in motoneurons. We demonstrate that crimpy (cmpy) limits neuronal Gbb activity to permit appropriate regulation of NMJ growth. cmpy was identified in a screen for motoneuron-expressed genes and encodes a single-pass transmembrane protein with sequence homology to vertebrate Cysteine-rich transmembrane BMP regulator 1 (Crim1). We generated a targeted deletion of the cmpy locus and find that loss-of-function mutants exhibit excessive NMJ growth. In accordance with its expression profile, tissue-specific rescue experiments indicate that cmpy functions neuronally. The overgrowth in cmpy mutants depends on the activity of the BMP type II receptor Wishful thinking, arguing that Cmpy acts in the BMP pathway upstream of receptor activation and raising the possibility that it inhibits Gbb activity in motoneurons. Indeed, the cmpy mutant phenotype is strongly suppressed by RNAi-mediated knockdown of Gbb in motoneurons. Furthermore, Cmpy physically interacts with the Gbb precursor protein, arguing that Cmpy binds Gbb prior to the secretion of mature ligand. These studies demonstrate that Cmpy restrains Gbb activity in motoneurons. We present a model whereby this inhibition permits the muscle-derived Gbb pool to predominate at the NMJ, thus establishing the retrograde directionality of the pro-growth BMP pathway.  相似文献   

10.
decapentaplegic (dpp), the Drosophila ortholog of BMP 2/4, directs ventral adult head morphogenesis through expression in the peripodial epithelium of the eye-antennal disc. This dpp expressing domain exerts effects both on the peripodial epithelium, and the underlying disc proper epithelium. We have uncovered a role for the Jun N-terminal kinase (JNK) pathway in dpp-mediated ventral head development. JNK activity is required for dpp's action on the disc proper, but in the absence of dpp expression, excessive JNK activity is produced, leading to specific loss of maxillary palps. In this review we outline our hypotheses on how dpp acts by both short range and longer range mechanisms to direct head morphogenesis and speculate on the dual role of JNK signaling in this process. Finally, we describe the regulatory control of dpp expression in the eye-antennal disc, and pose the problem of how the various expression domains of a secreted protein can be targeted to their specific functions.  相似文献   

11.
Species of various insect orders possess specialised tarsal adhesive structures covered by a thin liquid film, which is deposited in the form of footprints. This adhesive liquid has been suggested to be chemically and physiologically related to the epicuticular lipid layer, which naturally covers the body of insects and acts as the prime barrier to environmental stresses, such as desiccation. The functional efficiency of the layer, however, is jeopardised by partial melting that may occur at physiological temperatures. In this study, light microscopic images of elytral prints show that the epicuticular lipid layer of the Colorado potato beetle Leptinotarsa decemlineata actually is partially liquid and chemical investigations reveal the high similarity of the epicuticular hydrocarbon pattern and the tarsal liquid. By means of chemical manipulation of the surface hydrocarbon composition of live beetles, the substance exchange between their tarsal adhesive hairs and the body surface is monitored. Histological sections of L. decemlineata tarsi, furthermore, reveal glandular cells connected to individual adhesive setae and departing from these results, an idea of a general mechanism of tarsal secretion is developed and discussed in a functional–ecological context.  相似文献   

12.
13.
14.
Gene duplication and divergence is widely considered to be a fundamental mechanism for generating evolutionary novelties. The Bone Morphogenetic Proteins (BMPs) are a diverse family of signalling molecules found in all metazoan genomes that have evolved by duplication and divergence from a small number of ancestral types. In the fruit fly Drosophila, there are three BMPs: Decapentaplegic (Dpp) and Glass bottom boat (Gbb), which are the orthologues of vertebrate BMP2/4 and BMP5/6/7/8, respectively, and Screw (Scw), which, at the sequence level, is equally divergent from Dpp and Gbb. It has recently been shown that Scw has arisen from a duplication of Gbb in the lineage leading to higher Diptera. We show that since this duplication event, Gbb has maintained the ancestral BMP5/6/7/8 functionality while Scw has rapidly diverged. The evolution of Scw was accompanied by duplication and divergence of a suite of extracellular regulators that continue to diverge together in the higher Diptera. In addition, Scw has become restricted in its receptor specificity: Gbb proteins can signal through the Type I receptors Thick veins (Tkv) and Saxophone (Sax), while Scw signals through Sax. Thus, in a relatively short span of evolutionary time, the duplication event that gave rise to Scw produced not only a novel ligand but also a novel signalling mode that is functionally distinct from the ancestral Gbb mode. Our results demonstrate the plasticity of the BMP pathway not only in evolving new family members and new functions but also new signalling modes by redeploying key regulators in the pathway.  相似文献   

15.
Adipokinetic hormone (AKH) regulates energy homeostasis in insects by mobilizing lipid and carbohydrate from the fat body. Here, using RNA sequencing data, we identified cDNAs encoding AKH (GbAKH) and its highly homologous hormone AKH/corazonin-related peptide (GbACP) in the corpora cardiaca of the two-spotted cricket, Gryllus bimaculatus. RT-PCR revealed that GbAKH and GbACP are predominantly expressed in the corpora cardiaca and corpora allata, respectively. Phylogenetic analysis confirmed that the identified GbAKH and GbACP belong to the clades containing other AKHs and ACPs, respectively. Injection of synthetic GbAKH and GbACP elevated hemolymph carbohydrate and lipid levels and reduced food intake significantly. In contrast, knockdown of GbAKH and GbACP by RNA interference increased the food intake, although hemolymph lipid level was not altered. Collectively, this study provides evidence that ACP regulates hemolymph carbohydrate and lipid levels in cricket, possibly collaborative contribution with AKH to the maintenance of energy homeostasis.  相似文献   

16.
Macroautophagy/autophagy is a central mechanism by which cells maintain integrity and homeostasis, and endotoxin-induced autophagy plays important roles in innate immunity. Although TLR4 stimulation mediated by lipopolysaccharide (LPS) also upregulates autophagy in hepatocytes and liver, its physiological role remains elusive. The objective of this study was to determine the role of LPS-induced autophagy in the regulation of liver lipid metabolism. LPS treatment (5 mg/kg) increased autophagy, as detected by LC3 conversion and transmission electron microscopy (TEM) analysis in C57BL6 mouse livers. AC2F hepatocytes also showed increased autophagic flux after LPS treatment (1 μg/ml). To investigate the role of LPS-induced autophagy further, liver lipid metabolism changes in LPS-treated mice and fasted controls were compared. Interestingly, LPS-treated mice showed less lipid accumulation in liver than fasted mice despite increased fatty acid uptake and lipid synthesis-associated genes. In vitro analysis using AC2F hepatocytes demonstrated LPS-induced autophagy influenced the degradation of lipid droplets. Inhibition of LPS-induced autophagy using bafilomycin A1 or Atg7 knockdown significantly increased lipid accumulation in AC2F hepatocytes. In addition, pretreatment with chloroquine aggravated LPS-induced lipid accumulation and inflammation in C57BL6 mouse livers. The physiological importance of autophagy was verified in LPS-treated young and aged rats. Autophagic response was diminished in LPS-treated aged rats and lipid metabolism was impaired during sepsis, indicating autophagy response is important for regulating lipid metabolism after endotoxin challenge. Our findings demonstrate endotoxin-induced autophagy is important for the regulation of lipid metabolism, and suggest that autophagy helps maintain lipid metabolism homeostasis during sepsis.  相似文献   

17.
Morphogen gradients ensure the specification of different cell fates by dividing initially unpatterned cellular fields into distinct domains of gene expression. It is becoming clear that such gradients are not always simple concentration gradients of a single morphogen; however, the underlying mechanism of generating an activity gradient is poorly understood. Our data indicate that the relative contributions of two BMP ligands, Gbb and Dpp, to patterning the wing imaginal disc along its A/P axis, change as a function of distance from the ligand source. Gbb acts over a long distance to establish BMP target gene boundaries and a variety of cell fates throughout the wing disc, while Dpp functions at a shorter range. On its own, Dpp is not sufficient to mediate the low-threshold responses at the end points of the activity gradient, a function that Gbb fulfills. Given that both ligands signal through the Tkv type I receptor to activate the same downstream effector, Mad, the difference in their effective ranges must reflect an inherent difference in the ligands themselves, influencing how they interact with other molecules. The existence of related ligands with different functional ranges may represent a conserved mechanism used in different species to generate robust long range activity gradients.  相似文献   

18.
Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.  相似文献   

19.
A previous genetic analysis of a reporter gene carrying a 375-bp region from a dpp intron (dppMX-lacZ) revealed that the Wingless and Dpp pathways are required to activate dpp expression in posterior spiracle formation. Here we report that within the dppMX region there is an enhancer with binding sites for TCF and Mad that are essential for activating dppMX expression in posterior spiracles. There is also a binding site for Brinker likely employed to repress dppMX expression. This combinatorial enhancer may be the first identified with the ability to integrate temporally distinct positive (TCF and Mad) and negative (Brinker) inputs in the same cells. Cuticle studies on a unique dpp mutant lacking this enhancer showed that it is required for viability and that the Filzkorper are U-shaped rather than straight. Together with gene expression data from these mutants and from brk mutants, our results suggest that there are two rounds of Dpp signaling in posterior spiracle development. The first round is associated with dorsal-ventral patterning and is necessary for designating the posterior spiracle field. The second is governed by the combinatorial enhancer and begins during germ band retraction. The second round appears necessary for proper spiracle internal morphology and fusion with the remainder of the tracheal system. Intriguingly, several aspects of dpp posterior spiracle expression and function are similar to demonstrated roles for Wnt and BMP signaling in proximal-distal outgrowth of the mammalian embryonic lung.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号