首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Scrutiny of food packaging environmental impacts has led to a variety of sustainability directives, but has largely focused on the direct impacts of materials. A growing awareness of the impacts of food waste warrants a recalibration of packaging environmental assessment to include the indirect effects due to influences on food waste. In this study, we model 13 food products and their typical packaging formats through a consistent life cycle assessment framework in order to demonstrate the effect of food waste on overall system greenhouse gas (GHG) emissions and cumulative energy demand (CED). Starting with food waste rate estimates from the U.S. Department of Agriculture, we calculate the effect on GHG emissions and CED of a hypothetical 10% decrease in food waste rate. This defines a limit for increases in packaging impacts from innovative packaging solutions that will still lead to net system environmental benefits. The ratio of food production to packaging production environmental impact provides a guide to predicting food waste effects on system performance. Based on a survey of the food LCA literature, this ratio for GHG emissions ranges from 0.06 (wine example) to 780 (beef example). High ratios with foods such as cereals, dairy, seafood, and meats suggest greater opportunity for net impact reductions through packaging‐based food waste reduction innovations. While this study is not intended to provide definitive LCAs for the product/package systems modeled, it does illustrate both the importance of considering food waste when comparing packaging alternatives, and the potential for using packaging to reduce overall system impacts by reducing food waste.  相似文献   

2.
There is a growing concern over the security and sustainable supply of raw material among businesses and governments of developed, material‐intensive countries. This has led to the development of a systematic analysis of risk incorporated with raw materials usage, often referred as criticality assessment. In principle, this concept is based on the material flow approach. The potential role of life cycle assessment (LCA) to integrate resource criticality through broadening its scope into the life cycle sustainability assessment (LCSA) framework has been discussed within the LCA communities for some time. In this article, we aim at answering the question of how to proceed toward integration of the geopolitical aspect of resource criticality into the LCSA framework. The article focuses on the assessment of the geopolitical supply risk of 14 resources imported to the seven major advanced economies and the five most relevant emerging countries. Unlike a few previous studies, we propose a new method of calculation for the geopolitical supply risk, which is differentiated by countries based on the import patterns instead of a global production distribution. Our results suggest that rare earth elements, tungsten, antimony, and beryllium generally pose high geopolitical supply risk. Results from the Monte Carlo simulation allow consideration of data uncertainties for result interpretation. Issues concerning the consideration of the full supply chain are exemplarily discussed for cobalt. Our research broadens the scope of LCA from only environmental performance to a resource supply‐risk assessment tool that includes accessibility owing to political instability and market concentration under the LCSA framework.  相似文献   

3.
Electric vehicles (EVs) coupled with low‐carbon electricity sources offer the potential for reducing greenhouse gas emissions and exposure to tailpipe emissions from personal transportation. In considering these benefits, it is important to address concerns of problem‐shifting. In addition, while many studies have focused on the use phase in comparing transportation options, vehicle production is also significant when comparing conventional and EVs. We develop and provide a transparent life cycle inventory of conventional and electric vehicles and apply our inventory to assess conventional and EVs over a range of impact categories. We find that EVs powered by the present European electricity mix offer a 10% to 24% decrease in global warming potential (GWP) relative to conventional diesel or gasoline vehicles assuming lifetimes of 150,000 km. However, EVs exhibit the potential for significant increases in human toxicity, freshwater eco‐toxicity, freshwater eutrophication, and metal depletion impacts, largely emanating from the vehicle supply chain. Results are sensitive to assumptions regarding electricity source, use phase energy consumption, vehicle lifetime, and battery replacement schedules. Because production impacts are more significant for EVs than conventional vehicles, assuming a vehicle lifetime of 200,000 km exaggerates the GWP benefits of EVs to 27% to 29% relative to gasoline vehicles or 17% to 20% relative to diesel. An assumption of 100,000 km decreases the benefit of EVs to 9% to 14% with respect to gasoline vehicles and results in impacts indistinguishable from those of a diesel vehicle. Improving the environmental profile of EVs requires engagement around reducing vehicle production supply chain impacts and promoting clean electricity sources in decision making regarding electricity infrastructure.  相似文献   

4.
In many cases, policy makers and laymen perceive harmful emissions from chemical plants as the most important source of environmental impacts in chemical production. As a result, regulations and environmental efforts have tended to focus on this area. Concerns about energy use and greenhouse gas emissions, however, are increasing in all industrial sectors. Using a life cycle assessment (LCA) approach, we analyzed the full environmental impacts of producing 99 chemical products in Western Europe from cradle to factory gate. We applied several life cycle impact assessment (LCIA) methods to cover various impact areas. Our analysis shows that for both organic and inorganic chemical production in industrial countries, energy‐related impacts often represent more than half and sometimes up to 80% of the total impacts, according to a range of LCIA methods. Resource use for material feedstock is also important, whereas direct emissions from chemical plants may make up only 5% to 10% of the total environmental impacts. Additionally, the energy‐related impacts of organic chemical production increase with the complexity of the chemicals. The results of this study offer important information for policy makers and sustainability experts in the chemical industry striving to reduce environmental impacts. We identify more sustainable energy production and use as an important option for improvements in the environmental profile of chemical production in industrial countries, especially for the production of advanced organic and fine chemicals.  相似文献   

5.
This work contributes to the development of a dynamic life cycle assessment (DLCA) methodology by providing a methodological framework to link a dynamic system modeling method with a time‐dependent impact assessment method. This three‐step methodology starts by modeling systems where flows are described by temporal distributions. Then, a temporally differentiated life cycle inventory (TDLCI) is calculated to present the environmental exchanges through time. Finally, time‐dependent characterization factors are applied to the TDLCI to evaluate climate‐change impacts through time. The implementation of this new framework is illustrated by comparing systems producing domestic hot water (DHW) over an 80‐year period. Electricity is used to heat water in the first system, whereas the second system uses a combination of solar energy and gas to heat an equivalent amount of DHW at the same temperature. This comparison shows that using a different temporal precision (i.e., monthly vs. annual) to describe process flows can reverse conclusions regarding which case has the best environmental performance. Results also show that considering the timing of greenhouse gas (GHG) emissions reduces the absolute values of carbon footprint in the short‐term when compared with results from the static life cycle assessment. This pragmatic framework for the implementation of time in DLCA studies is proposed to help in the development of the methodology. It is not yet a fully operational scheme, and efforts are still required before DLCA can become state of practice.  相似文献   

6.
Nanomaterials are expected to play an important role in the development of sustainable products. The use of nanomaterials in solar cells has the potential to increase their conversion efficiency. In this study, we performed a life cycle assessment (LCA) for an emerging nanowire‐based solar technology. Two lab‐scale manufacturing routes for the production of nanowire‐based solar cells have been compared—the direct growth of GaInP nanowires on silicon substrate and the growth of InP nanowires on native substrate, peel off, and transfer to silicon substrate. The analysis revealed critical raw materials and processes of the current lab‐scale manufacturing routes such as the use of trifluoromethane (CHF3), gold, and an InP wafer and a stamp, which are used and discarded. The environmental performance of the two production routes under different scenarios has been assessed. The scenarios include the use of an alternative process to reduce the gold requirements—electroplating instead of metallization, recovery of gold, and reuse of the InP wafer and the stamp. A number of suggestions, based on the LCA results—including minimization of the use of gold and further exploration for upscaling of the electroplating process, the increase in the lifetimes of the wafer and the stamp, and the use of fluorine‐free etching materials—have been communicated to the researchers in order to improve the environmental performance of the technology. Finally, the usefulness and limitations of lab‐scale LCA as a tool to guide the sustainable development of emerging technologies are discussed.  相似文献   

7.
Studies of industrial symbiosis (IS) focus on the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are shared or exchanged among the actors of the system, thereby reducing the consumption of virgin material and energy inputs, and likewise the generation of waste and emissions. In this study, the environmental impacts of an industrial ecosystem centered around a pulp and paper mill and operating as an IS are analyzed using life cycle assessment (LCA). The system is compared with two hypothetical reference systems in which the actors would operate in isolation. Moreover, the system is analyzed further in order to identify possibilities for additional links between the actors. The results show that of the total life cycle impacts of the system, upstream processes made the greatest overall contribution to the results. Comparison with stand‐alone production shows that in the case studied, the industrial symbiosis results in modest improvements, 5% to 20% in most impact categories, in the overall environmental impacts of the system. Most of the benefits occur upstream through heat and electricity production for the local town. All in all it is recommended that when the environmental impacts of industrial symbiosis are assessed, the impacts occurring upstream should also be studied, not only the impacts within the ecosystem.  相似文献   

8.
- Goal, Scope, Background. As of July 1st, 2006, lead will be banned in most solder pastes used in the electronics industry. This has called for environmental evaluation of alternatives to tin-lead solders. Our life cycle assessment (LCA) has two aims: (i) to compare attributional and consequential LCA methodologies, and (ii) to compare a SnPb solder (62% tin, 36% lead, 2% silver) to a Pb-free solder (95.5% tin, 3.8% silver, 0.7% copper). Methods An attributional LCA model describes the environmental impact of the solder life cycle. Ideally, it should include average data on each unit process within the life cycle. The model does not include unit processes other than those of the life cycle investigated, but significant cut-offs within the life cycle can be avoided through the use of environmentally expanded input-output tables. A consequential LCA model includes unit processes that are significantly affected irrespective of whether they are within or outside the life cycle. Ideally, it should include marginal data on bulk production processes in the background system. Our consequential LCA model includes economic partial equilibrium models of the lead and scrap lead markets. However, both our LCA models are based on data from the literature or from individual production sites. The partial equilibrium models are based on assumptions. The life cycle impact assessment is restricted to global warming potential (GWP). Results and Discussion The attributional LCA demonstrates the obvious fact that the shift from SnPb to Pb-free solder means that lead is more or less eliminated from the solder life cycle. The attributional LCA results also indicate that the Pb-free option contributes 10% more to the GWP than SnPb. Despite the poor quality of the data, the consequential LCA demonstrates that, when lead use is eliminated from the solder life cycle, the effect is partly offset by increased lead use in batteries and other products. This shift can contribute to environmental improvement because lead emissions are likely to be greatly reduced, while batteries can contribute to reducing GWP, thereby offsetting part of the GWP increase in the solder life cycle. Conclusions The shift from SnPb to Pb-free solder is likely to result in reduced lead emissions and increased GWP. Attributional and consequential LCAs yield complementary knowledge on the consequences of this shift in solder pastes. At present, consequential LCA is hampered by the lack of readily available marginal data and the lack of input data to economic partial equilibrium models. However, when the input to a consequential LCA model is in the form of quantitative assumptions based on a semi-qualitative discussion, the model can still generate new knowledge. Recommendations and Outlook Experts on partial equilibrium models should be involved in consequential LCA modeling in order to improve the input data on price elasticity, marginal production, and marginal consumption.  相似文献   

9.
When software is used to facilitate life cycle assessments (LCAs), the implicit assumption is that the results obtained are not a function of the choice of software used. LCAs were done in both SimaPro and GaBi for simplified systems of creation and disposal of 1 kilogram each of four basic materials (aluminum, corrugated board, glass, and polyethylene terephthalate) to determine whether there were significant differences in the results. Data files and impact assessment methodologies (Impact 2002, ReCiPe, and TRACI 2) were ostensibly identical (although there were minor variations in the available ReCiPe version between the programs that were investigated). Differences in reported impacts of greater than 20% for at least one of the four materials were found for 9 of the 15 categories in Impact 2002+, 7 of the 18 categories in ReCiPe, and four of the nine categories in TRACI. In some cases, these differences resulted in changes in the relative rankings of the four materials. The causes of the differences for 14 combinations of materials and impact categories were examined by tracing the results back to the life cycle inventory data and the characterization factors in the life cycle impact assessment (LCIA) methods. In all cases examined, a difference in the characterization factors used by the two programs was the cause of the differing results. As a result, when these software programs are used to inform choices, the result can be different conclusions about relative environmental preference that are functions purely of the software implementation of LCIA methods, rather than of the underlying data.  相似文献   

10.
Life cycle inventory data have multiple sources of uncertainty. These data uncertainties are often modeled using probability density functions, and in the ecoinvent database the lognormal distribution is used by default to model exchange uncertainty values. The aim of this article is to systematically measure the effect of this default distribution by changing from the lognormal to several other distribution functions and examining how this change affects the uncertainty of life cycle assessment results. Using the ecoinvent 2.2 inventory database, data uncertainty distributions are switched from the lognormal distribution to the normal, triangular, and gamma distributions. The effect of the distribution switching is assessed for both impact assessment results of individual products system, as well as comparisons between product systems. Impact assessment results are generated using 5,000 Monte Carlo iterations for each product system, using the Intergovernmental Panel on Climate Change (IPCC) 2001 (100‐year time frame) method. When comparing the lognormal distribution to the alternative default distributions, the difference in the resulting median and standard deviation values range from slight to significant, depending on the distributions used by default. However, the switch shows practically no effect on product system comparisons. Yet, impact assessment results are sensitive to how the data uncertainties are defined. In this article, we followed what we believe to be ecoinvent standard practice and preserved the “most representative” value. Practitioners should recognize that the most representative value can depart from the average of a probability distribution. Consistent default distribution choices are necessary when performing product system comparisons.  相似文献   

11.
A healthy debate on the treatment of metals recycling in the life cycle assessment (LCA) community has persisted for more than a decade. While no clear consensus across stakeholder groups has emerged, the metals industry has endorsed a set of recycling “facts” that support a single approach, end‐of‐life recycling, for evaluating the environmental benefits of metals recycling. In this article we draw from research conducted in several disciplines and find that three key tenets of the metals industry capture the theoretical potential of metals recycling from a metallurgical standpoint rather than reflecting observed behavior. We then discuss the implications of these conclusions on environmental emissions from metals production and recycling. Evidence is provided that, contrary to the position of the metals industry, metals are not necessarily recycled at high rates, are recycled only a small number of times before final disposal, and are sometimes limited in recycling potential by the economics of contaminant removal. The analysis concludes that metal recycled from old scrap largely serves as an imperfect substitute for primary metal. As a result, large‐scale displacement of primary production and its associated environmental emissions is currently limited to a few specific instances.  相似文献   

12.
This article presents an approach to estimate missing elements in hybrid life cycle inventories. Its development is motivated by a desire to rationalize inventory compilation while maintaining the quality of the data. The approach builds on a hybrid framework, that is, a combination of process‐ and input–output‐based life cycle assessment (LCA) methodology. The application of Leontief's price model is central in the proposed procedure. Through the application of this approach, an inventory with no cutoff with respect to costs can be obtained. The formal framework is presented and discussed. A numerical example is provided in Supplementary Appendix S1 on the Web.  相似文献   

13.
14.
The environmental assessment of nanomanufacturing during the initial process design phase should lead to the development of competitive, safe, and environmentally responsible engineering and commercialization. Given the potential benefits and concerns regarding the use of single‐walled carbon nanotubes (SWNTs), three SWNT production processes have been investigated to assess their associated environmental impacts. These processes include arc ablation (arc), chemical vapor deposition (CVD), and high‐pressure carbon monoxide (HiPco). Without consideration of the currently unknown impacts of SWNT dispersion or other health impacts, life cycle assessment (LCA) methodology is used to analyze the environmental impact and provide a baseline for the environmental footprint of each manufacturing process. Although the technical attributes of the product resulting from each process may not be fully comparable, this study presents comparisons that show that the life cycle impacts are dominated by energy, specifically the electricity used in production. Under base case yield conditions, HiPco shows the lowest environmental impact, while the arc process has the lowest impact under best case yield conditions.  相似文献   

15.
This study aims to assess the environmental impacts of canned sardines in olive oil, by considering fishing, processing, and packaging, using life cycle assessment (LCA) methodology. The case study concerns a product of a canning factory based in Portugal and packed in aluminum cans. It is the first LCA of a processed seafood product made with the traditional canning method. The production of both cans and olive oil are the most important process in the considered impact categories. The production of olives contributes to the high environmental load of olive oil, related to cultivation and harvesting phases. The production of aluminum cans is the most significant process for all impact categories, except ozone depletion potential and eutrophication potential, resulting from the high energy demand and the extraction of raw materials. To compare to other sardine products consumed in Portugal, such as frozen and fresh sardines, transport to the wholesaler and store was added. The environmental cost of canned sardines is almost seven times higher per kilogram of edible product. The main action to optimize the environmental performance of canned sardines is therefore to replace the packaging and diminish the olive oil losses as much as possible. Greenhouse gas emissions are reduced by half when plastic packaging is considered rather than aluminum. Frozen and fresh sardines represent much lower environmental impacts than canned sardines. Nevertheless, when other sardine products are not possible, it becomes feasible to use sardines for human consumption, preventing them from being wasted or used suboptimally as feed.  相似文献   

16.
One of the key features of environmental policy integration in Sweden is sector responsibility. The National Board of Housing, Building and Planning is responsible for the building and real estate management sector and should, as a part of this responsibility, assess the environmental impacts of this sector. The aim of this study is to suggest and demonstrate a method for such an assessment. The suggested method is a life cycle assessment, based on an input‐output analysis. The method can be used for regular monitoring and for prioritization between different improving measures. For the assessment to sufficiently cover the Swedish Environmental Quality Objectives, complementary information is needed, in particular with respect to the indoor environment. According to the results, the real estate management sector contributes between 10% and 40% of Swedish energy use; use of hazardous chemical products; generation of solid waste; emissions of gases contributing to climate change; and human toxicological impacts, including nitrogen oxides (NOx) and particulates. Transport and production of nonrenewable building materials contribute significantly to several of the emissions. Heating of buildings contributes more to energy use than to climate change, due to the use of renewable energy sources. To reduce climate change, measures should therefore prioritize not only heating of buildings but also the important upstream processes.  相似文献   

17.
No life cycle assessment (LCA) of artisanal and small‐scale mining activities (A&Sma) has been identified as of today, and there are limited studies about large‐scale mining and alluvial mining. The A&Sma are relevant economic sectors in countries with large reserves of mineral resources. Gold is the most representative metal mined with these practices and is used not only in jewelry but also in several electronics appliances. South America accounted for 17% of the total worldwide gold extraction in 2005; A&Sma occurred mostly in Colombia, Peru, and Brazil. The aim of this study is to estimate environmental indicators using methodologies for life cycle inventories (LCIs) in one of the two largest producers of gold through A&Sma in South America, Peru, and to discuss possible indicators for A&Sma in South America. Different functional units were used for each case study, as gold with different concentrations was produced and it was not possible to collect data for downstream processes for both bases. The product systems start in the mining and end with the gold production. Data were collected in two mining sites and, later on, related to the functional units. The results showed the amount of energy and water consumed as well as mercury used and released, carbon dioxide (CO2) emissions, and solid wastes for each type of gold produced.  相似文献   

18.
The cradle‐to‐cradle (C2C) concept has emerged as an alternative to the more established eco‐efficiency concept based on life cycle assessment (LCA). The two concepts differ fundamentally in that eco‐efficiency aims to reduce the negative environmental footprint of human activities while C2C attempts to increase the positive footprint. This article discusses the strengths and weaknesses of each concept and suggests how they may learn from each other. The eco‐efficiency concept involves no long‐term vision or strategy, the links between resource consumption and waste emissions are not well related to the sustainability state, and increases in eco‐efficiency may lead to increases in consumption levels and hence overall impact. The C2C concept's disregard for energy efficiency means that many current C2C products will likely not perform well in an LCA. Inherent drawbacks are restrictions on the development of new materials posed by the ambition of continuous loop recycling, the perception that human interactions with nature can benefit all parts of all ecosystems, and the hinted compatibility with continued economic growth. Practitioners of eco‐efficiency can benefit from the visions of C2C to avoid a narrow‐minded focus on the eco‐efficiency of products that are inherently unsustainable. Moreover, resource efficiency and positive environmental effects could be included more strongly in LCA. Practitioners of C2C on the other hand should recognize the value of LCA in addressing trade‐offs between resource conservation and energy use. Also, when designing a “healthy emission” it should be recognized that it will often have an adverse effect on parts of the exposed ecosystem.  相似文献   

19.
An end‐point life cycle impact assessment is used to evaluate the damages of electricity generation from fossil fuel‐based power plants with carbon dioxide capture and storage (CCS) technology. Pulverized coal (PC), integrated gasification combined cycle (IGCC), and natural gas combined cycle (NGCC) power plants are assessed for carbon dioxide (CO2) capture, pipeline transport, and storage in a geological formation. Results show that the CCS systems reduce the climate change‐related damages but increase the damages from toxicity, acidification, eutrophication, and resource consumption. Based on the currently available damage calculation methods, it is concluded that the benefit of reducing damage from climate change is larger than the increases in other damage categories, such as health effects from particulates or toxic chemicals. CCS significantly reduces the overall environmental damage, with a net reduction of 60% to 70% in human health damage and 65% to 75% in ecosystem damage. Most of the damage is due to fuel production and combustion processes. The energy and infrastructure demands of CCS cause increases in the depletion of natural resources by 33% for PC, 19% for IGCC, and 18% for NGCC power plants, mostly due to increased fossil fuel consumption.  相似文献   

20.
The relationship between environmental life cycle costing (ELCC) and sustainability was explored using two detailed wastewater case studies. The case studies were selected to increase the tension between existing market values and values for sustainability; the first case study considered incremental change to an existing plant and the second considered a paradigm shift in wastewater treatment. Pollution control provided the greatest cost savings for the first case study and provided a “win‐win” result—meeting existing standards and saving money. However, benefits for pollution control beyond current standards were not captured, which emphasized the role of standards to internalize as well as limit the values considered in ELCC. In the second case study, the value of water had the potential to change the focus of wastewater design from pollution abatement to resource recovery. However, social acceptance of recovered water and market access for resources created large risk for investment. The ELCC was also sensitive to the discount rate which limited longer‐term considerations. Other sustainability values such as scarcity and ecological thresholds were not captured. The ELCC code of practice suggests including such costs if likely in the foreseeable future; defining these values may also clarify the role of ELCC to evaluate sustainability over the life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号