首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim To document patterns in diversity, altitudinal range and body size of freshwater fishes along an elevational gradient in the Yangtze River basin. Location The Yangtze River basin, China. Methods We used published data to compile the distribution, altitudinal range and body size of freshwater fishes. Correlation, regression, clustering and graphical analyses were used to explore patterns in diversity, altitudinal range and body size of freshwater fishes in 100‐m elevation zones from 0 to 5200 m. Results Species richness patterns across the elevational gradient for total, non‐endemic and endemic fishes were different. The ratio of endemics to total richness peaked at mid elevation. Land area on a 500‐m interval scale explained a significant amount of the variation in species richness. Species density displayed two peaks at mid‐elevation zones. The cluster analysis revealed five distinct assemblages across the elevation gradient. The relationship between elevational range size and the midpoint of the elevational range revealed a triangular distribution. The frequency distribution of log maximum standard length data displayed an atypical right‐skewed pattern. Intermediate body sizes occurred across the greatest range of elevation while small and large body sizes possessed only small elevational amplitudes. The size‐elevation relationship between the two major families revealed a very strong pattern of body size constraint among the Cobitidae with no corresponding elevational constraint and a lot of body size and elevational diversification among the Cyprinidae. Main conclusion The data failed to support either Rapoport's rule or Bergmann's rule.  相似文献   

2.
Aim We addressed the following questions: (1) Does tephritid body size tend to increase in species found at higher elevations, as predicted by Bergmann's rule? (2) Do tephritids conform to Rapoport's rule, so that species found at higher elevations tend to have broader altitudinal ranges? (3) More generally, how do body size and host range jointly affect the patterns of altitudinal distribution among Neotropical tephritid flies? Location The Mantiqueira mountain range, south‐eastern Brazil, at sites ranging from c. 700 to 2500 m a.s.l. Methods At each site we collected flower heads of all Asteraceae species to rear out endophagous immatures (from January to June in 1998 and 1999). We used structural equation models (SEM) to evaluate jointly the relationships between body size, host range and altitudinal distribution (range and mid‐point). Results Neotropical tephritid body size showed a negative relationship with altitudinal distribution. SE modelling showed no significant direct effect of body size on altitudinal range; however, it had significant indirect negative effects through host range and altitudinal mid‐point. The SE model was a good predictor of observed correlations and accounted for 84% of the variation in tephritid altitudinal range. Main conclusions The altitudinal range of flower‐head‐feeding tephritids is related to host range and is indirectly affected by body size via host range and altitudinal mid‐point. As predicted by Rapoport's rule, tephritids that occur at higher elevations also present wider altitudinal ranges. Bergmann's rule does not apply to Neotropical tephritids along a tropical elevational gradient, but rather its converse was found. Body size may determine host range by imposing a restriction upon large individuals using small flower heads. Host species turnover along the altitudinal gradient may be the main factor explaining the strong relationship between host range and insect elevational distribution.  相似文献   

3.
The role of competition for light among plants has long been recognised at local scales, but its importance for plant species distributions at larger spatial scales has generally been ignored. Tree cover modifies the local abiotic conditions below the canopy, notably by reducing light availability, and thus, also the performance of species that are not adapted to low‐light conditions. However, this local effect may propagate to coarser spatial grains, by affecting colonisation probabilities and local extinction risks of herbs and shrubs. To assess the effect of tree cover at both the plot‐ and landscape‐grain sizes (approximately 10‐m and 1‐km), we fit generalised linear models (GLMs) for the plot‐level distributions of 960 species of herbs and shrubs using 6935 vegetation plots across the European Alps. We ran four models with different combinations of variables (climate, soil and tree cover) at both spatial grains for each species. We used partial regressions to evaluate the independent effects of plot‐ and landscape‐grain tree cover on plot‐level plant communities. Finally, the effects on species‐specific elevational range limits were assessed by simulating a removal experiment comparing the species distributions under high and low tree cover. Accounting for tree cover improved the model performance, with the probability of the presence of shade‐tolerant species increasing with increasing tree cover, whereas shade‐intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both the plot and landscape spatial grains, albeit most strongly at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot‐level plant communities. With high tree cover, shade‐intolerant species exhibited narrower elevational ranges than with low tree cover whereas shade‐tolerant species showed wider elevational ranges. These findings suggest that forecasts of climate‐related range shifts for herb and shrub species may be modified by tree cover dynamics.  相似文献   

4.
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.  相似文献   

5.
Aim Species distribution models have been used frequently to assess the effects of climate change on mountain biodiversity. However, the value and accuracy of these assessments have been hampered by the use of low‐resolution data for species distributions and climatic conditions. Herein we assess potential changes in the distribution and community composition of tree species in two mountainous regions of Spain under specific scenarios of climate change using data with a high spatial resolution. We also describe potential changes in species distributions and tree communities along the entire elevational gradient. Location Two mountain ranges in southern Europe: the Central Mountain Range (central west of the Iberian Peninsula), and the Iberian Mountain Range (central east). Methods We modelled current and future distributions of 15 tree species (Eurosiberian, sub‐Mediterranean and Mediterranean species) as functions of climate, lithology and availability of soil water using generalized linear models (logistic regression) and machine learning models (gradient boosting). Using multivariate ordination of a matrix of presence/absence of tree species obtained under two Intergovernmental Panel on Climate Change (IPCC) scenarios (A2 and B2) for two different periods in the future (2041–70 and 2071–2100), we assessed the predicted changes in the composition of tree communities. Results The models predicted an upward migration of communities of Mediterranean trees to higher elevations and an associated decline in communities of temperate or cold‐adapted trees during the 21st century. It was predicted that 80–99% of the area that shows a climate suitable for cold–wet‐optimum Eurosiberian coniferous and broad‐leaved species will be lost. The largest overall changes were predicted for Mediterranean species found currently at low elevations, such as Pinus halepensis, Pinus pinaster, Quercus ilex ssp. ballota and Juniperus oxycedrus, with sharp increases in their range of 350%. Main conclusions It is likely that areas with climatic conditions suitable for cold‐adapted species will decrease significantly under climate warming. Large changes in species ranges and forest communities might occur, not only at high elevations within Mediterranean mountains but also along the entire elevational gradient throughout this region, particularly at low and mid‐elevations. Mediterranean mountains might lose their key role as refugia for cold‐adapted species and thus an important part of their genetic heritage.  相似文献   

6.
We present here a multiscale modelling approach to predict the current and future spatial distribution of Ring Ouzel (Turdus torquatus) and Blackbird (T. merula) in Switzerland. Species distribution models (SDMs) are applied on three different scales in order to analyse the scale-dependency of predictors that describe the species’ realised niche. While the models on the macro- and mesoscales (grid of 100 and 1 km2, respectively) cover the entire country, our small-scale models are based on a small set of territories. Ring Ouzels occur at altitudes above 1000 m a.s.l. only, while Blackbirds occur from the lowlands up to the timberline. Although both species coexist on the macro- and mesoscales, a direct niche overlap on territory scale is rare. Small-scale differences in vegetation cover and structure seem to play a dominant role in habitat selection. On the macroscale, however, we observed a high dependency on bioclimatic variables that mainly represent the altitudinal range and the related forest structure preferred by both species. Applying the models to climate change scenarios, we predict a decline of suitable habitat for the Ring Ouzel with a simultaneous median altitudinal shift of 440 m until 2070. In contrast, the Blackbird is predicted to benefit from higher temperatures and expand its range to higher elevations. Based on the species distribution models we (1) demonstrate the scale-dependency of environmental predictors, (2) quantify the scale-dependent habitat requirements of Blackbird and Ring Ouzel and (3) predict the altitudinal range shift of both species as related to climate change scenarios.  相似文献   

7.
Aim Species in the tropics respond to global warming by altitudinal distribution shifts. Consequences for biodiversity may be severe, resulting in lowland attrition, range‐shift gaps, range contractions and extinction risks. We aim to identify plant groups (growth forms, families, endemic status) with higher than average risks. Location South Ethiopian highlands. Methods Based on observational data from mainly unexplored and remote mountain regions, we applied a published model to project the consequences of an upward shift of thermal site conditions on the altitudinal distribution of 475 plant species. Annual average temperature increases of up to 5 °C were evaluated. Differences between groups of species were analysed by a permutation procedure and Generalized Linear Models. Results Because of a limited regional species pool, even mild warming is projected to create strong potential risks concerning lowland attrition, i.e. the net loss of species richness because of upward range shifts in the absence of new species arriving. Likewise, many species are expected to face range‐shift gaps, i.e. the absence of an overlap between future and current altitudinal ranges already under mild warming scenarios. Altitudinal contractions and mountain‐top extinctions will potentially become important when warming exceeds 3.5 °C. Mean area per species is projected to decline by 55% for the A2 emissions scenario (+4.2 °C until 2100) because of the physical shape of the mountains. Higher than average vulnerability is expected for endemic species as well as for herbs and ferns. Plant families that are especially threatened are identified. Main conclusions Lowland biotic attrition and range‐shift gaps as predicted by a simple model driven by shifts of isotherms will result in novel challenges for preserving mountain biodiversity in the inner tropics. Whereas contractions of occupied area are expected to threaten endemic and already endangered species in particular, we suggest that conservation priorities can be identified based on simple prognostic models even without precise regional warming scenarios.  相似文献   

8.
Changes in climate variables have an important impact on the prediction and protection of elevational biodiversity. Gaps exist in our understanding of the elevational distribution patterns in seed plant species richness. Our study examines the importance of climate variables in shaping the elevational variation in species richness. The importance of boundary constraint was also taken into account. Model selection based on Akaike's information criterion was used to select the best explaining climate models. Variation partitioning was used to assess the independent and joint effects of water–energy, physiological tolerance, and environmental stability variables on species richness. Our results revealed that: (a) Both raw (boundary constraint unreduced) and estimated (boundary constraint reduced) species richness showed large elevational variation, with the peak species richness seen at midelevations. The environmental variables were better at explaining the distribution pattern of species richness along the elevation, when the effect of boundary constraint was reduced; (b) the physiological tolerance and environmental stability variables explained more variation in raw and estimated species richness compared with the water–energy variables. Estimated species richness was better explained (98.6%) by the environmental variables than raw species richness (94%); (c) the water‐related variables generally had the highest independent effect on raw and estimated species richness and were dominant in shaping the elevational variation in species richness. Our findings quantify the influence of boundary constraint on the distribution pattern of species along an altitudinal gradient and compare the relative contributions of environmental stability and water–energy in explaining the altitude gradient distribution pattern of plant seed species.  相似文献   

9.
Aim In simulation exercises, mid‐domain peaks in species richness arise as a result of the random placement of modelled species ranges within simulated geometric constraints. This has been called the mid‐domain effect (MDE). Where close correspondence is found between such simulations and empirical data, it is not possible to reject the hypothesis that empirical species richness patterns result from the MDE rather than being the outcome (wholly or largely) of other factors. To separate the influence of the MDE from other factors we therefore need to evaluate variables other than species richness. The distribution of range sizes gives different predictions between models including the MDE or not. Here, we produce predictions for species richness and distribution of range sizes from one model without the MDE and from two MDE models: a classical MDE model encompassing only species with their entire range within the domain (range‐restricted MDE), and a model encompassing all species with the theoretical midpoint within the domain (midpoint‐restricted MDE). These predictions are compared with observations from the elevational pattern of range‐size distributions and species richness of vascular plants. Location Mount Kinabalu, Borneo. Methods The data set analysed comprises more than 28,000 plant specimens with information on elevation. Species ranges are simulated with various assumptions for the three models, and the species simulated are subsequently subjected to a sampling that simulates the actual collection of species on Mount Kinabalu. The resulting pattern of species richness and species range‐size distributions are compared with the observed pattern. Results The comparison of simulated and observed patterns indicates that an underlying monotonically decreasing trend in species richness with elevation is essential to explain fully the observed pattern of richness and range size. When the underlying trend is accounted for, the MDE model that restricts the distributions of theoretical midpoints performs better than both the classical MDE model and the model that does not incorporate geometric constraints. Main conclusions Of the three models evaluated here, the midpoint‐restricted MDE model is found to be the best for explaining species richness and species range‐size distributions on Mount Kinabalu.  相似文献   

10.
Aim To explore species richness patterns in liverworts and mosses along a central Himalayan altitudinal gradient in Nepal (100–5500 m a.s.l.) and to compare these patterns with patterns observed for ferns and flowering plants. We also evaluate the potential importance of Rapoport’s elevational rule in explaining the observed richness patterns for liverworts and mosses. Location Nepal, Central Himalaya. Methods We used published data on the altitudinal ranges of over 840 Nepalese mosses and liverworts to interpolate presence between maximum and minimum recorded elevations, thereby giving estimates of species richness for 100‐m altitudinal bands. These were compared with previously published patterns for ferns and flowering plants, derived in the same way. Rapoport’s elevational rule was assessed by correlation analyses and the statistical significance of the observed correlations was evaluated by Monte Carlo simulations. Results There are strong correlations between richness of the four groups of plants. A humped, unimodal relationship between species richness and altitude was observed for both liverworts and mosses, with maximum richness at 2800 m and 2500 m, respectively. These peaks contrast with the richness peak of ferns at 1900 m and of vascular plants, which have a plateau in species richness between 1500 and 2500 m. Endemic liverworts have their maximum richness at 3300 m, whereas non‐endemic liverworts show their maximum richness at 2700 m. The proportion of endemic species is highest at about 4250 m. There is no support from Nepalese mosses for Rapoport’s elevational rule. Despite a high correlation between altitude and elevational range for Nepalese liverworts, results from null simulation models suggest that no clear conclusions can be made about whether liverworts support Rapoport’s elevational rule. Main conclusions Different demands for climatic variables such as available energy and water may be the main reason for the differences between the observed patterns for the four plant groups. The mid‐domain effect may explain part of the observed pattern in moss and liverwort richness but it probably only works as a modifier of the main underlying relationship between climate and species richness.  相似文献   

11.
The first expected symptoms of a climate change‐generated biodiversity crisis are range contractions and extinctions at lower elevational and latitudinal limits to species distributions. However, whilst range expansions at high elevations and latitudes have been widely documented, there has been surprisingly little evidence for contractions at warm margins. We show that lower elevational limits for 16 butterfly species in central Spain have risen on average by 212 m (± SE 60) in 30 years, accompanying a 1.3 °C rise (equivalent to c. 225 m) in mean annual temperature. These elevational shifts signify an average reduction in habitable area by one‐third, with losses of 50–80% projected for the coming century, given maintenance of the species thermal associations. The results suggest that many species have already suffered climate‐mediated habitat losses that may threaten their long‐term chances of survival.  相似文献   

12.
Aim Species richness is an important feature of communities that varies along elevational gradients. Different patterns of distribution have been described in the literature for various taxonomic groups. This study aims to distinguish between species density and species richness and to describe, for land snails in south‐eastern France, the altitudinal patterns of both at different spatial scales. Location The study was conducted on five calcareous mountains in south‐eastern France (Etoile, Sainte Baume, Sainte Victoire, Ventoux and Queyras). Methods Stratified sampling according to vegetation and altitude was undertaken on five mountains, forming a composite altitudinal gradient ranging from 100 to 3100 m. Visual searching and analysis of turf samples were undertaken to collect land snail species. Species density is defined as the number of species found within quadrats of 25 m2. Species richness is defined as the number of species found within an elevation zone. Different methods involving accumulation curves are used to describe the patterns in species richness. Elevation zones of different sizes are studied. Results Eighty‐seven species of land snails were recovered from 209 samples analysed during this study. Land snail species density, which can vary between 29 and 1 species per 25 m2, decreases logarithmically with increasing altitude along the full gradient. However, on each mountain separately, only a linear decrease is observable. The climatic altitudinal gradient can explain a large part of this pattern, but the great variability suggests that other factors, such as heterogeneity of ground cover, also exert an influence on species density. The altitudinal pattern of species richness varies depending on the spatial resolution of the study. At fine resolution (altitudinal zones of 100 m) land snail species richness forms a plateau at altitudes below 1000 m, before decreasing with increasing altitude. At coarse resolution (altitudinal zones of 500 and 1000 m) the relationship becomes linear. Main conclusions This study reveals that land snail species density and land snail species richness form two different altitudinal patterns. Species density exhibits strong variability between sites of comparable altitude. A large number of samples seem necessary to study altitudinal patterns of species density. Species density decreases logarithmically with increasing altitude. Above a critical altitudinal threshold, this decrease lessens below the rate seen in the first 1500 m. Different methods exist to scale‐up species density to species richness but these often produce different patterns. In this study, the use of accumulation curves has yielded a pattern of species richness showing a plateau at low altitude, whereas simple plotting of known altitudinal ranges from single mountains would have produced stronger mid‐altitudinal peaks. This study shows that not only factors such as temperatures and habitat heterogeneity, but also an ecotone effect, are responsible for the observed patterns.  相似文献   

13.
14.
Altitudinal migration is a common and important but understudied behavior in birds. Difficulty in characterizing avian altitudinal migration has prevented a comprehensive understanding of this behavior. To address this, we investigated the altitudinal migration patterns and explored potential drivers for a major proportion (~70%) of the entire resident bird community along an almost 4000 m elevational gradient on the main island of Taiwan. Based on the occurrence records collected by citizen scientists, we examined the seasonal shifts in the center and the upper and lower boundaries of elevational distributions for 104 individual species. We then built phylogeny‐controlled regression models to investigate the associations between the birds’ seasonal distribution shifts and seven of their traits, and examined whether the observed shifts can be explained by three main hypotheses on potential drivers. Results showed that at least 60 species (58%) seasonally changed their distributions along elevations. While most of them (42 species) tended to move downhill in winter, a considerable number of species (14) tended to move uphill. While the species breeding at high or low elevations tended to move downhill in winter, those breeding at medium‐low elevations tended to move or extend their distributions to higher elevations. Our regression models suggested that seasonal variations in climates and food availability could be major drivers of the behavior. However, the three hypotheses can only partially explain the observed downhill migration patterns and none of them can well explain the uphill patterns, indicating an important knowledge gap. This study investigated avian altitudinal migration from a new perspective with a novel and generalizable approach, and revealed interesting patterns that could be difficult to identify with conventional approaches. It demonstrated the power of citizen science data to provide new insights into this behavior by characterizing the general patterns and mechanisms across a large number of species.  相似文献   

15.
We will analyse the geographical and vertical distributions of Ecuadorian high páramo plants. Lists of species were prepared for six Ecuadorian mountains, and floristic relationships among them were expressed by means of Sørensen's index of similarity. A mantel test was employed to analyse the pattern of geographical distribution of the species to see if the distance between the mountains was sufficient to explain the differences discovered. Altitudinal range and mean altitude of species occurrence were tested against the number of mountains from which the species were recorded using a Kruskal–Wallis nonparametric test. We found that distance as a single factor can not fully explain the pattern of floristic similarity shared by the mountains. Other important factors are involved. Altitudinal range of the species examined was positively correlated with their distribution in Ecuador. Species with a broad altitudinal occurrence were found on several mountains, whereas species with narrow altitudinal distribution were found on fewer mountains.  相似文献   

16.

Aim

Global warming is predicted to shift distributions of mountain species upwards, driven by a release from climatic restrictions at their upper distribution limit and increased biotic pressure at their lower distribution limit. In alpine ecosystems, which are characterized by large microclimatic diversity and sparse vegetation cover, the relative importance of abiotic and biotic drivers for species distribution is poorly understood. To disentangle abiotic and biotic mechanisms affecting distributions of alpine species, we investigated how alpine plant species with differing elevational ranges and frequency trends over the past century differ in their microhabitat distribution, and how they respond to neighbouring vegetation.

Location

A total of 11 summits (2635—3410 m a.s.l.) in SE‐Switzerland.

Methods

We quantified the microscale abundance of 12 species in relation to biogeographic (frequency trend, i.e., change in occurrences over the past century, and elevational range on summits) and local microhabitat characteristics (temperature, substrate type). We assessed species size traits in relation to neighbouring vegetation characteristics to investigate possible neighbour interactions.

Results

Species with increasing frequency on summits over the past century were most abundant on scree and warmer slopes. Species with negative or stable frequency trends on summits were more abundant on organic soil and colder slopes. The preferred microhabitats of the latter were rarest overall, decreased with increasing elevation, and had the most competitive neighbours. Size of one high‐alpine specialist, Ranunculus glacialis was negatively related to cover of neighbouring vegetation, whereas other species showed no response to neighbours.

Main conclusions

Long‐term frequency trends of species correlate with their microhabitat association. Species with most negative frequency trends show preferences for the rarest microhabitat conditions, where they likely experience higher competitive pressure in a warming climate. This finding emphasizes the importance of characterizing microhabitat associations and microclimatic diversity to assess present and future distributions of alpine plant species.
  相似文献   

17.
Aim We studied pteridophyte species richness between 100 m and 3400 m along a Neotropical elevational gradient and tested competing hypotheses for patterns of species richness. Location Elevational transects were situated at Volcán Barva in the Braulio Carrillo National Park and La Selva Biological Station (100–2800 m) and Cerro de la Muerte (2700–3400 m), both on the Atlantic slope of Costa Rica, Central America. Method We analysed species richness on 156 plots of 20 × 20 m and measured temperature and humidity at four elevations (40, 650, 1800 and 2800 m). Species richness patterns were regressed against climatic variables (temperature, humidity, precipitation and actual evapotranspiration), regional species pool, area and predicted species number of a geometric null model (the mid‐domain effect, MDE). Results The species richness of the 484 recorded species showed a hump‐shaped pattern with elevation with a richness peak at mid‐elevations (c. 1700 m). The MDE was the single most powerful explanatory variable in linear regression models, but species richness was also associated strongly with climatic variables, especially humidity and temperature. Area and species pool were associated less strongly with observed richness patterns. Main conclusions Geometric models and climatic models exclusive of geometric constraints explained comparable amounts of the elevational variation in species richness. Discrimination between these two factor complexes is not possible based on model fits. While overall fits of geometric models were high, large‐ and small‐ranged species were explained by geometric models to different extents. Species with narrow elevational ranges clustered at both ends of the gradient to a greater extent than predicted by the MDE null models used here. While geometric models explained much of the pattern in species richness, we cannot rule out the role of climatic factors (or vice versa) because the predicted peak in richness from geometric models, the empirical peak in richness and the overlap in favourable environmental conditions all coincide at middle elevations. Mid‐elevations offer highest humidity and moderate temperatures, whereas at high elevations richness is reduced due to low temperatures, and at low elevations by reduced water availability due to high temperatures.  相似文献   

18.
Aim We test for the congruence between allele‐based range boundaries (break zones) in silicicolous alpine plants and species‐based break zones in the silicicolous flora of the European Alps. We also ask whether such break zones coincide with areas of large elevational variation. Location The European Alps. Methods On a regular grid laid across the entire Alps, we determined areas of allele‐ and species‐based break zones using respective clustering algorithms, identifying discontinuities in cluster distributions (breaks), and quantifying integrated break densities (break zones). Discontinuities were identified based on the intra‐specific genetic variation of 12 species and on the floristic distribution data from 239 species, respectively. Coincidence between the two types of break zones was tested using Spearman’s correlation. Break zone densities were also regressed on topographical complexity to test for the effect of elevational variation. Results We found that two main break zones in the distribution of alleles and species were significantly correlated. Furthermore, we show that these break zones are in topographically complex regions, characterized by massive elevational ranges owing to high mountains and deep glacial valleys. We detected a third break zone in the distribution of species in the eastern Alps, which is not correlated with topographic complexity, and which is also not evident from allelic distribution patterns. Species with the potential for long‐distance dispersal tended to show larger distribution ranges than short‐distance dispersers. Main conclusions We suggest that the history of Pleistocene glaciations is the main driver of the congruence between allele‐based and species‐based distribution patterns, because occurrences of both species and alleles were subject to the same processes (such as extinction, migration and drift) that shaped the distributions of species and genetic lineages. Large elevational ranges have had a profound effect as a dispersal barrier for alleles during post‐glacial immigration. Because plant species, unlike alleles, cannot spread via pollen but only via seed, and thus disperse less effectively, we conclude that species break zones are maintained over longer time spans and reflect more ancient patterns than allele break zones.  相似文献   

19.
Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentata Nutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: ?6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: ?47.9%, ?41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.  相似文献   

20.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号