首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian species differ up to 100‐fold in their aging rates and maximum lifespans. Long‐lived mammals appear to possess traits that extend lifespan and healthspan. Genomic analyses have not revealed a single pro‐longevity function that would account for all longevity effects. In contrast, it appears that pro‐longevity mechanisms may be complex traits afforded by connections between metabolism and protein functions that are impossible to predict by genomic approaches alone. Thus, metabolomics and proteomics studies will be required to understand the mechanisms of longevity. Several examples are reviewed that demonstrate the naked mole rat (NMR) shows unique proteomic signatures that contribute to longevity by overcoming several hallmarks of aging. SIRT6 is also discussed as an example of a protein that evolves enhanced enzymatic function in long‐lived species. Finally, it is shown that several longevity‐related proteins such as Cip1/p21, FOXO3, TOP2A, AKT1, RICTOR, INSR, and SIRT6 harbor posttranslational modification (PTM) sites that preferentially appear in either short‐ or long‐lived species and provide examples of crosstalk between PTM sites. Prospects of enhancing lifespan and healthspan of humans by altering metabolism and proteoforms with drugs that mimic changes observed in long‐lived species are discussed.  相似文献   

2.
Response of endophytic fruit fly species (Tephritidae) to larval crowding is a form of scramble competition that may affect important life history traits of adults, such as survival and reproduction. Recent empirical evidence demonstrates large differences in adult life history traits, especially longevity, among Mediterranean fruit fly (Ceratitis capitata; "medfly") biotypes obtained from different regions of the world. However, whether the evolution of long lifespan is associated with response to stress induced by larval crowding has not been fully elucidated. We investigated, under constant laboratory conditions, the response of a short‐ and a long‐lived medfly biotypes to stress induced by larval crowding. Survival and development of larvae and pupae and the size of resulting pupae were recorded. The lifespan and age‐specific egg production patterns of the obtained adults were recorded. Our findings reveal that increased larval density reduced immature survival (larvae and pupae) in the short‐lived biotype but had rather neutral effects on the longed‐lived one. Only larvae of the long‐lived biotype were capable of prolonging their developmental duration under the highest crowding regime to successfully pupate and emerge as adults. Response of emerging adults to larvae crowding conditions was similar in the two medfly biotypes. Those individuals emerging from high larval density regimes had reduced longevity and fecundity. Long‐lived biotype individuals, however, appeared to suffer a higher cost in longevity compared with the short‐lived one. The importance of our findings to understand the evolution of long lifespan is discussed.  相似文献   

3.
4.
Brain size of vertebrates has long been recognized to evolve in close association with basic life‐history traits, including lifespan. According to the cognitive buffer hypothesis, large brains facilitate the construction of behavioral responses against novel socioecological challenges through general cognitive processes, which should reduce mortality and increase lifespan. While the occurrence of brain size–lifespan correlation has been well documented in mammals, much less evidence exists for a robust link between brain size and longevity in birds. The aim of this study was to use phylogenetically controlled comparative approach to test for the relationship between brain size and longevity among 384 avian species from 23 orders. We used maximum lifespan and maximum reproductive lifespan as the measures of longevity and accounted for a set of possible confounding effects, such as allometry, sampling effort, geographic patterns, and life‐history components (clutch size, incubation length, and mode of development). We found that both measures of longevity positively correlated with relative (residual) brain size. We also showed that major diversification of brain size preceded diversification of longevity in avian evolution. In contrast to previous findings, the effect of brain size on longevity was consistent across lineages with different development patterns, although the relatively low strength of this correlation could likely be attributed to the ubiquity of allomaternal care associated with the altricial mode of development. Our study indicates that the positive relationship between brain size and longevity in birds may be more general than previously thought.  相似文献   

5.
6.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   

7.
8.
Naked mole‐rats (NMRs) are mouse‐sized mammals that exhibit an exceptionally long lifespan (>30 vs. <4 years for mice), and resist aging‐related pathologies such as cardiovascular and pulmonary diseases, cancer, and neurodegeneration. However, the mechanisms underlying this exceptional longevity and disease resistance remain poorly understood. The oxidative stress theory of aging posits that (a) senescence results from the accumulation of oxidative damage inflicted by reactive oxygen species (ROS) of mitochondrial origin, and (b) mitochondria of long‐lived species produce less ROS than do mitochondria of short‐lived species. However, comparative studies over the past 28 years have produced equivocal results supporting this latter prediction. We hypothesized that, rather than differences in ROS generation, the capacity of mitochondria to consume ROS might distinguish long‐lived species from short‐lived species. To test this hypothesis, we compared mitochondrial production and consumption of hydrogen peroxide (H2O2; as a proxy of overall ROS metabolism) between NMR and mouse skeletal muscle and heart. We found that the two species had comparable rates of mitochondrial H2O2 generation in both tissues; however, the capacity of mitochondria to consume ROS was markedly greater in NMRs. Specifically, maximal observed consumption rates were approximately two and fivefold greater in NMRs than in mice, for skeletal muscle and heart, respectively. Our results indicate that differences in matrix ROS detoxification capacity between species may contribute to their divergence in lifespan.  相似文献   

9.
10.
Speakman JR 《Aging cell》2005,4(4):167-175
Comparative differences between species provide a powerful source of information that may inform our understanding of the aging process. However, two problems regularly attend such analyses. The co-variation of traits with body mass is frequently ignored, along with the lack of independence of the data due to a shared phylogenetic history. These problems undermine the use of simple correlations between various factors and maximum lifespan potential (MLSP) across different species as evidence that the factors in question have causal effects on aging. Both of these problems have been widely addressed by comparative biologists working in fields other than aging research, and statistical solutions to these issues are available. Using these statistical approaches, of making analyses of residual traits with the effects of body mass removed, and deriving phylogenetically independent contrasts, will allow analyses of the relationships between physiology and maximum lifespan potential to proceed unhindered by these difficulties, potentially leading to many useful insights into the aging process.  相似文献   

11.
1. Whether life‐history traits can determine community composition and structure is an important question that has been well explored theoretically, but has received scant empirical attention. Life‐history traits of a seven‐member community of galler and parasitoid fig wasp species (Chalcidoidea), developing within the inflorescences (syconia) of Ficus racemosa (Moraceae) in India, were determined and used to examine community structure and ecology. 2. Gallers were pro‐ovigenic (all eggs are mature upon adult emergence) whereas parasitoids were synovigenic (eggs mature progressively during adult lifespan). Initial egg load was correlated with body size for some species, and there was a trade‐off between egg number and egg size across all species. Although all species completed their development and left the syconium concurrently, they differed in their adult and pre‐adult lifespans. Providing sucrose solutions increased parasitoid lifespan but had no effect on the longevity of some galler species. While feeding regimes and body size affected longevity in most species, an interaction effect between these variables was detected for only one species. 3. Life‐history traits of wasp species exhibited a continuum in relation to their arrival sequence at syconia for oviposition during syconium development, and therefore reflected their ecology. The largest number of eggs, smallest egg sizes, and shortest longevities were characteristic of the earliest‐arriving galling wasps at the smallest, immature syconia; the converse characterised the later‐arriving parasitoids at the larger, already parasitised syconia. Thus life history is an important correlate of community resource partitioning and can be used to understand community structure. 4. This is the first comprehensive study of life‐history traits in a fig wasp community. The comparative approach revealed constraints and flexibility in trait evolution.  相似文献   

12.
13.
When comparing lifespan (longevity) between species, it is common practice to take the maximum recorded longevity value within each species as a proxy of maximum lifespan. Whether maximum recorded longevity is a reliable proxy of species' maximum longevity remains unclear. Some researchers correct for previously documented life history correlates of maximum recorded longevity before analysing new predictors of lifespan across species in the context of their current, specific hypotheses. At present there is no certainty that all relevant statistical, phenotypic, or ecological biases are accounted for by such corrective measures. Here, we employ Monte Carlo simulation to investigate the effect of differences in recapture numbers, recapture types (the point in life at which individuals are initially captured or recaptured), and actuarial population decay structure of simulated species on their maximum recorded longevities. We show that maximum recorded longevities differ in response to all three of these variables, as well as all of their two‐ and three‐way interactions. We then investigate empirical avian band‐recapture data for evidence of biases caused by recapture number and recapture type, predicted by the Monte Carlo analysis, and confirm the predicted biases as major sources of variance. Finally, we investigate the relationship between recapture type, recapture number, and a selection of ecological and life‐history variables previously documented to correlate with maximum recorded longevity, and find significant correlations between the biasing variables and those published correlates. Our results call into question the validity of using maximum recorded longevity as a proxy for different species' maximum longevities in comparative studies investigating the evolution of lifespan.  相似文献   

14.
Characterizing the genetic basis of among‐species variation in lifespan is a major goal of evolutionary gerontology research, but the very feature that defines separate species – the inability to interbreed – makes achieving this goal impractical, if not impossible, for most taxa. Pristionchus nematodes provide an intriguing system for tackling this problem, as female lifespan varies among species that can be crossed to form viable (although infertile) hybrids. By conducting reciprocal crosses among three species – two dioecious (long‐lived Pristionchus exspectatus and short‐lived Pristionchus arcanus) and one androdioecious (short‐lived Pristionchus pacificus) – we found that female lifespan was long for all hybrids, consistent with the hypothesis that the relatively short lifespans seen for P. pacificus hermaphrodites and P. arcanus females are caused by independent, recessive alleles that are masked in hybrid genomes. Cross‐direction had a small effect on survivorship for crosses involving P. exspectatus, indicating that nuclear–mitochondrial interactions may also influence Pristionchus longevity. Our findings suggest that long lifespan in P. exspectatus reflects the realization of an ancestral potential for extended longevity in the P. pacificus species complex. This work demonstrates the utility of interspecific hybrids for ageing research and provides a foundation for future work on the genetic architecture of interspecific lifespan variation.  相似文献   

15.
Aging leads to hypothalamic inflammation, but does so more slowly in mice whose lifespan has been extended by mutations that affect GH/IGF‐1 signals. Early‐life exposure to GH by injection, or to nutrient restriction in the first 3 weeks of life, also modulate both lifespan and the pace of hypothalamic inflammation. Three drugs extend lifespan of UM‐HET3 mice in a sex‐specific way: acarbose (ACA), 17‐α‐estradiol (17αE2), and nordihydroguaiaretic acid (NDGA), with more dramatic longevity increases in males in each case. In this study, we examined the effect of these anti‐aging drugs on neuro‐inflammation in hypothalamus and hippocampus. We found that age‐associated hypothalamic inflammation is reduced in males but not in females at 12 months of age by ACA and 17αE2 and at 22 months of age in NDGA‐treated mice. The three drugs blocked indices of hypothalamic reactive gliosis associated with aging, such as Iba‐1‐positive microglia and GFAP‐positive astrocytes, as well as age‐associated overproduction of TNF‐α. This effect was not observed in drug‐treated female mice or in the hippocampus of the drug‐treated animals. On the other hand, caloric restriction (CR; an intervention that extends the lifespan in both sexes) significantly reduced hypothalamic microglia and TNF‐α in both sexes at 12 months of age. Together, these results suggest that the extent of drug‐induced changes in hypothalamic inflammatory processes is sexually dimorphic in a pattern that parallels the effects of these agents on mouse longevity and that mimics the changes seen, in both sexes, of long‐lived nutrient restricted or mutant mice.  相似文献   

16.
Diet restriction increases longevity while reducing fecundity in a broad range of organisms. However, there are exceptions to this rule, and the causes of these exceptions remain unclear. One hypothesis is that short‐lived, semelparous organisms gain no benefit from increased longevity regardless of nutritional resources. Another hypothesis is that organisms may alter their behaviour to compensate for nutrient deficiencies. We examined these hypotheses in the colonial orb‐weaving spider Cyrtophora citricola. Sexual cannibalism is frequent in this species so that females are long lived and interoparous while males are semelparous. Because of these differing sexual strategies, we predicted that the common pattern of increased longevity under diet restriction would hold for females but not for males. We also investigated in a semi‐natural setting whether spiders could compensate for diet restriction by altering their feeding behaviour. Diet‐restricted females produced fewer offspring but lived longer than well‐fed females, while diet had no effect on male longevity. Despite being semelparous, virgin males were quite long‐lived, suggesting that potential lifespan is relatively unimportant in determining the effects of diet restriction. Contrary to our predictions, females were unable to compensate for their restricted diet by altering their foraging behaviour. Instead, semi‐natural conditions increased the differences between spiders on high and low diets, suggesting that the effects of diet restriction can be pervasive under natural conditions.  相似文献   

17.
As in other poikilotherms, longevity in C. elegans varies inversely with temperature; worms are longer‐lived at lower temperatures. While this observation may seem intuitive based on thermodynamics, the molecular and genetic basis for this phenomenon is not well understood. Several recent reports have argued that lifespan changes across temperatures are genetically controlled by temperature‐specific gene regulation. Here, we provide data that both corroborate those studies and suggest that temperature‐specific longevity is more the rule than the exception. By measuring the lifespans of worms with single modifications reported to be important for longevity at 15, 20, or 25 °C, we find that the effect of each modification on lifespan is highly dependent on temperature. Our results suggest that genetics play a major role in temperature‐associated longevity and are consistent with the hypothesis that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) of death may also be modified, leading to different genes and pathways becoming more or less important at different temperatures. These differential mechanisms of age‐related death are not unlike what is observed in humans, where environmental conditions lead to development of different diseases of aging.  相似文献   

18.
Senescence, the process of physiological deterioration associated with growing old, is a shared characteristic of a wide range of animals. Yet, lifespan varies dramatically among species. To explain this variation, the evolutionary theory of ageing has been proposed more than 50 yr ago. Although the theory has been tested experimentally and through comparative analyses, there remains debate whether its fundamental prediction is empirically supported. Here, we use a comprehensive database on avian life history traits to test the evolutionary theory of ageing at a global scale. We show that pronounced geographical gradients of maximum longevity exist, that they are predicted by measures of predator diversity and only partly depend on correlated life‐history traits. The results are consistent with species‐level analyses and can be replicated across bio‐geographical regions. Our analyses suggest that stochastic predation is an important driver of the evolution of lifespan, at least in birds.  相似文献   

19.
The Mojave Desert of North America has become fire‐prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post‐fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life‐history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life‐history traits and evaluated whether these groups exhibited a consistent fire‐response. Six life‐history traits varied significantly between burned and unburned areas in short (up to 4 years) or long‐term (up to 52 years) post‐fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life‐history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind‐dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non‐wind dispersed seeds, and taller heights. Our results show that PFTs based on life‐history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long‐lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life‐history strategies.  相似文献   

20.
Although tropical forests have been rapidly converted into human‐modified landscapes, tree species response to forest edges remains poorly examined. In this study, we addressed four pioneer tree species to document demographic shifts experienced by this key ecological group and make inferences about pioneer response to forest edges. All individuals with dbh ≥ 1 cm of two short‐lived (Bellucia grossularioides and Cecropia sciadophylla) and two long‐lived species (Goupia glabra and Laetia procera) were sampled in 20 1‐ha forest edge plots and 20 1‐ha forest interior plots in Oiapoque and Manaus, Northeast and Central Amazon, respectively. As expected, pioneer stem density with dbh ≥ 1 cm increased by around 10–17‐fold along forest edges regardless of species, lifespan, and study site. Edge populations of long‐lived pioneers presented 84–94 percent of their individuals in sapling/subadult size classes, whereas edge populations of short‐lived pioneers showed 56–97 percent of their individuals in adult size classes. These demographic biases were associated with negative and positive net adult recruitment of long‐ and short‐lived pioneers, respectively. Our population‐level analyses support three general statements: (1) native pioneer tree species proliferate along forest edges (i.e., increased density), at least in terms of non‐reproductive individuals; (2) pioneer response to edge establishment is not homogeneous as species differ in terms of demographic structure and net adult recruitment; and (3) some pioneer species, particularly long‐lived ones, may experience population decline due to adult sensitivity to edge‐affected habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号