首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acidic polysaccharide of Serratia piscatorum consists of L-rhamnopyranosyl, D-galactopyranosyl, and D-galactopyranosyluronic acid residues in the molar ratio of 2:1:1. Some of the D-galactopyranosyluronic acid residues are acetylated at O-2 or O-3, or both. Smith degradation and methylation analysis indicated that the L-rhamnopyranosyl, D-galactopyranosyl, and D-galactopyranosyluronic acid residues are substituted with glycosidic linkages at O-3, O-3, and O-4, respectively. Partial acid hydrolysis of the native polysaccharide gave four acidic oligosaccharides, each of which was isolated and characterized, suggesting the following tetrasaccharide repeating unit: →3)-L-Rhap-(1→4)-D-GalAp-(1→3)-L-Rhap-(1→3)-D-Galp-(1→.  相似文献   

2.
Periodate oxidation of LPG-1 established that N-acetylneuraminic acid residues are linked preponderantly α-(2→3) to D-galactose residues. The resistance of 2-acetamido-2-deoxyD-galactose residues to periodate oxidation suggests that they are linked at either O-3 or O-4 to D-galactose residues. After treatment of LPG-I with alkaline sulfite, ≈80% of 2-acetamido-2-deoxygalactose was recovered as the sulfonic acid derivative. The Gal→GalNAc disaccharide released from sialic-acid-free LPG-I by digestion with endo-2-acetamido-2-deoxy-α-D-galactosidase (which suggests an α-D-GalNAc→-L-Ser or -L-Thr linkage) gave a high color-yield in the Morgan—Elson reaction, indicating that 2-acetamido-2-deoxy-D-galactose residues are linked at C-3 to D-galactose residues. The migration of the released Gal-GalNAc disaccharide was the same as that of a standard sample of O-β-D-galactosyl-(1→3)-2-acetamido-2-deoxy-D-galactose. Treatment of sialic acid-free LPG-I with Streptococcus pneumoniae β-D-galactosidase, which hydrolyzes only galactosides linked β-D-(1→4) gave no free D-galactose, whereas treatment of LPG-I with bovine testes β-D-galactosidase released > 90% of D-galactose. These results provide evidence for β-D-Galp-(1→3)-α-D-GalNAcp-(1→3)-L-Ser or -L-Thr and α-NeuAc-(2→3)-β-D-Galp-(1→3)-α-D- GalNAcp-(1→3)-L-Ser or -L-Thr structures. The sensitivity of the methods used and the recovery of constituents following treatment of LPG-I do not rule out the occurrence of small amounts of other tri- or tetra-saccharide chains.  相似文献   

3.
Partial hydrolysis with acid, methylation analysis (including uronic acid degradation), Smith degradation, and p.m.r. spectroscopy have been used to determine the primary structure of the capsular polysaccharide of Klebsiella serotype k64. The hexasaccharide repeating-unit, which also contains one O-acetyl substituent, comprises a 4)-α-d-GlcpA-(1 → 3)-α-d-Manp-(1 → 3)-β-d-Glcp-(1 → 4)-α-d-Manp-(1 → chain with a 4,6-O-(l-carboxyethylidene)-β-d-glucopyranosyl and an l-rhamnosyl group attached to the 4-linked d-mannosyl residue at O-2 and O-3, respectively.  相似文献   

4.
《Carbohydrate research》1987,166(2):263-269
An arabinoxylan isolated from the bark of Cinnamomum zeylanicum was composed of l-arabinose and d-xylose in the molar ratio 1.6:1.0. Partial hydrolysis furnished oligosaccharides which were characterised as α-d-Xylp-(1→3)-d-Ara, β-dXylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-β-d-Xylp-Xylp-(1→4)-d-Xyl, xylopentaose, and xylohexaose. Mild acid hydrolysis of the arabinoxylan gave a degraded polysaccharide consisting of l-arabinose (8%) and d-xyolse (92%). Methylation analysis indicated the degraded polysaccharide to be a linear (1→4)-linked d-xlan in which some xylopyranosyl residues were substituted at O-2 or O-3 with l-arabinofuranosyl groups. These data together with the results of methylation analysis and periodate oxidation of the arabinoxylan suggested that it contained a (1→4)-linked β-d-xylan backbone in which each xylopyranosyl residue was substituted both at O-2 and O-3 with l-arabinofuranosyl, 3-O-α-d-xylopyranosyl-l-arabinofuranosyl, and 3-O-l-arabinofuranosyl-l-arabinofuranosyl groups.  相似文献   

5.
Two l-arabino-d-galactan-containing glycoproteins having a potent inhibitory activity against eel anti-H agglutinin were isolated from the hot saline extracts of mature radish leaves and characterized to have a similar monosaccharide composition that consists of l-arabinose, d-galactose, l-fucose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid residues. The chemical structure features of the carbohydrate components were investigated by carboxyl group reduction, methylation, periodate oxidation, partial acid hydrolysis, and digestion with exo- and endo-glycosidases, which indicated a backbone chain of (1→3)-linked β-d-galactosyl residues, to which side chains consisting of α-(1→6)-linked d-galactosyl residues were attached. The α-l-arabinofuranosyl residues were attached as single nonreducing groups and as O-2- or O-3-linked residues to O-3 of the β-d-galactosyl residues of the side chains. Single α-l-fucopyranosyl end groups were linked to O-2 of the l-arabinofuranosyl residues, and the 4-O-methyl-β-d-glucopyranosyluronic acid end groups were linked to d-galactosyl residues. The O-α-l-fucopyranosyl-(1→2)-α-l-arabinofuranosyl end-groups were shown to be responsible for the serological, H-like activity of the l-arabino-d-galactan glycoproteins. Reductive alkaline degradation of the glycoconjugates showed that a large proportion of the polysaccharide chains is conjugated with the polypeptide backbone through a 3-O-d-galactosylserine linkage.  相似文献   

6.
Structures of the cell wall glycopolymers from two representatives of the genus Rathayibacter were investigated using chemical, NMR spectroscopy, and optical methods. The R. toxicus VKM Ac-1600 strain contains two neutral glycopolymers–a linear rhamnomannan →2)-α-D-Rhap-(1→3)-α-D-Manp-(1→ and a branched polysaccharide containing in the repeating unit the residues of D-Manp, D-Glcp, and L-Rhap in the ratios of 2: 4: 1, respectively (the structure is presented in the text). The “Rathayibacter tanaceti” VKM Ac-2596 contains a rhamnomannan that is different from the above-described one by localization of glycosidic bonds on the residues of α-Rhap and α-Manp, i.e. →3)-α-D-Rhap (1→2)-α-D-Manp-(1→. The structures of all identified glycopolymers are described for the first time in actinobacteria. The data obtained make it possible to characterize representatives of the studied actinobacteria more fully and can be used to differentiate Rathayibacter species at the phenotype level.  相似文献   

7.
The polysaccharide of the mucin secreted by the leaves of Drosera capensis is composed of l-arabinose, d-xylose, d-galactose, d-mannose, and d-glucuronic acid in the molar ratio of 3.6:1.0:4.9:8.4:8.2. For structural elucidation, methylation analysis using g.l.c. and g.l.c.-m.s. was performed on the native, the carboxyl-reduced, and the degraded polysaccharides. Partial hydrolysis, periodate oxidation, chromium trioxide oxidation, and uronic acid degradation were also performed on the native and carboxyl-reduced polysaccharides. Partial hydrolysis of the native and carboxyl-reduced polysaccharides gave various oligosaccharides that were characterized and suggest a structure containing a d-glucurono-d-mannan backbone having a repeating unit → 4)-β-d-GlcpA-(1 → 2)-α-d-Manp-(1 →. l-Arabinose and d-xylose are present as nonreducing furanosyl and pyranosyl end-groups, respectively, both attached to O-3 of d-glucuronic acid residues of the backbone. d-Galactose is present as non-reducing pyranosyl end-group linked to O-3 of d-mannose residues.  相似文献   

8.
The structures of cell wall glycopolymers from the type strains of three Actinoplanes species were investigated using chemical methods, NMR spectroscopy, and mass spectrometry. Actinoplanes digitatis VKM Ac-649T contains two phosphate-containing glycopolymers: poly(diglycosyl-1-phosphate) →6)-α-D-GlcpNAc-(1-P-6)-α-D-GlcpN-(1→ and teichoic acid →1)-sn-Gro-(3-P-3)-β-[β-D-GlcpNAc-(1→2]-D-Galp-(1→. Two glycopolymers were identified in A. auranticolor VKM Ac-648T and A. cyaneus VKM Ac-1095T: minor polymer–unsubstituted 2,3-poly(glycerol phosphate), widely abundant in actinobacteria (Ac-648T), and mannan with trisaccharide repeating unit →2)-α-D-Manp-(1→2)-α-D-Manp(1→6)-α-D-Manp-(1→(Ac-1095T). In addition, both microorganisms contain a teichuronic acid of unique structure containing a pentasaccharide repeating unit with two residues of glucopyranose and three residues of diaminouronic acids in D-manno- and/or D-gluco-configuration. Each of the strains demonstrates peculiarities in the structure of teichuronic acid with respect to the ratio of diaminouronic acids and availability and location of O-methyl groups in glucopyranose residues. All investigated strains contain a unique set of glycopolymers in their cell walls with structures not described earlier for prokaryotes.  相似文献   

9.
Two polysaccharides were isolated from submergedly cultured mycelium of the basidiomycete Ganoderma lucidum by extraction with alkali followed by fractionation with Fehling reagent. The polysaccharides were shown to be a linear (1→3)-α-D-glucan and a highly branched xylomannan containing a backbone built up of (1→3)-linked α-D-mannopyranose residues, the majority of which are substituted at O-4 by single β-D-xylopyranose residues or by disaccharide fragments β-D-Manp-(1→3)-β-D-Xylp-(1→. Polysaccharide structures were elucidated by NMR spectroscopy in combination with methylation analysis and periodate oxidation. An interesting feature of the xylomannan is the simultaneous presence of α-D-mannopyranose and β-D-mannopyranose residues, the first forming the backbone, and the second being the non-reducing terminal units of disaccharide side chains.  相似文献   

10.
The crystal structure of α-D-Manp-(1→3)-β-D-Manp-(1→4)-α-D-GlcNAcp has been determined by the direct method using the multi-solution, tangent formula, and “magic integer” procedures. The space group is P22, and 2 molecules are in the unit cell with a  9.894 (5), b  10.372 (6), c  11.816 (6) Å, and β  95.03° (6). The structure was refined to R 0.059 for 2099 reflections measured with Mo Kα radiation. Difference synthesis showed all the hydrogen atoms, and indicated a partial (~30%) substitution of the α-anomer molecules by the β-anomer molecules. The D-mannopyranose and the D-glucopyranose have the normal 4C1 conformation; an intramolecular hydrogen-bond O-3″-H.....O-5′ (2.703 Å) stabilises the GlcNAc in relation to β-D-mannopyranose.  相似文献   

11.
A unique, alkali-soluble polysaccharide has been isolated from the cell walls of the basidiomycete Coprinus macrorhizus microsporus. The polysaccharide, which is primarily a glucan, contains a large proportion of α-(1→4)-linked d-glucose residues and a smaller amount of β-(1→3) and (1→6) linkages, as suggested by methylation, partial acid hydrolysis, periodate oxidation, and enzymic studies. Hydrolysis of the methylated polysaccharide gave equimolar amounts of 2,4-di- and 2,3-di-O-methyl-d-glucose; no 2,6-di-O-methyl-d-glucose was identified, indicating the absence of branch points joined through O-1, O-3, and O-4. The isolation and identification of 2-O-α- glucopyranosylerythritol from the periodate-oxidized polysaccharide suggests that segments of the a-(1→4)-linked d-glucose residues are joined by single (1→3)-linkages. An extracellular enzyme-preparation from Sporotrichum dimorphosporum (QM 806) containing both β-(1→3)- and α-(1→4)-d-glucanohydrolase activity released 76% of the reducing groups from the polysaccharide. The polysaccharide also contains minor proportions of xylose, mannose, 2-amino-2-deoxyglucose, and amino acids.  相似文献   

12.
After partial, acid hydrolysis of the extracellular, acid polysaccharide from Rh. trifolii Bart A, the following products were isolated and characterized: 3,4-O-(1-carboxyethylidene)-d-galactose, 4,6-O-(1-carboxyethylidene)-d-galactose, 3-O-[3,4-O-(1-carboxyethylidene)-β-d)-galactopyranosyl]-d-glucose, 3-O-[4,6-O-(1-carboxyethylidene)-β-d-galactopyranosyl]-d-glucose, O-[3,4-O-(1-carboxyethylidene)-β-d-galactopyranosyl ]-(1→3)-O-d-glucopyranosyl-(1→4)-d-glucose, and O-[4,6-O-(1- carboxyethylidene)-β-d-galactopyranosyl]-(1→3)-O-β-d-glucopyranosyl-(1→4)-d-glucose. The presence of pyruvic acid linked either to O-3 and O-4 or to O-4 and O-6 of the d-galactopyranosyl group of these saccharides indicates that both structures may be present in the original polysaccharide.  相似文献   

13.
The capsular polysaccharide from Streptococcus pneumoniae type 1 is composed of D-galactopyranosyluronic acid residues and 2-acetamido-4-amino-2,4,6-trideoxy-D-galactopyranosyl residues. The latter sugar, previously unknown in Nature, was not isolated but was identified from the products obtained on deamination of the polymer. Using n.m.r. spectroscopy, methylation analysis, and Smith degradation as the principal methods of structural investigation, it is concluded that the polysaccharide is composed of trisaccharide repeating-units having the structure: →3)-α-Sugp-(1→)-α-D-GalpA-(1→3)-α-D-GalpA-(1→, in which Sug denotes the new sugar.  相似文献   

14.
The structure of the antitumor polysaccharide from the actinomycete Microellobosporia grisea has been investigated. By methylation and periodate-oxidation studies, the polysaccharide was shown to consist of (nonreducing)d-mannosyl groups, (1→4)-linkedd-glucosyl residues, and 3,6-branched, (1→4)-linkedd-glucosyl residues in the approximate molar ratios of 2:1:1. Periodate oxidation of the polysaccharide, followed by borohydride reduction and mild hydrolysis with acid yielded glycerol, erythritol, 2-O-β-d-glucopyranosyl-d-erythritol, and 5-O-β-d-glucopyranosyl-2,4-bis(hydroxymethyl)-1,3-dioxane, which were isolated in the molar ratios of 2.0:0.14:0.74:0.35. Partial hydrolysis of the polysaccharide gave α-d-Man p-(1→6)-d-Glcp, β-d-Glcp-(1→4)-d-Glcp, α-d-Man p-(1→3)-d-Glcp, and β-d-Glcp-(1→4)-[α-d-Man p-(1→3)-]-d-Glcp. From these results, it is proposed that the polysaccharide is mainly composed of tetrasaccharide repeating-units having the following structure.  相似文献   

15.
《Carbohydrate research》1987,168(2):245-274
Rhamnogalacturonan I is a pectic polysaccharide that is solubilized from the walls of suspension-cultured sycamore cells (Acer pseudoplatanus) by the action of a highly purified endo-1,4-α-polygalacturonanase. Rhamnogalacturonan I has a linear backbone consisting of the diglycosyl repeating unit, →4)-α-d-GalpA-(1→2)-α-l-Rhap-(1→. Approximately half of the α-l-rhamnosyl residues of the backbone are branched at O-4. Selective cleavage at the galactosyluronic acid residues of the backbone by treatment of rhamnogalacturonan I wit lithium in ethylenediamine resulted in the release of the neutral glycosyl-residue sidechains that had been attached to the backbone. Various analytical techniques, including combined liquid chromatography-mass spectrometry, combined gas-liquid chromatography-mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy, were used to determine the structure of the side chains. The majority of the sidechains were isolated as oligoglycosylalditols, with rhamnitol at the “reducing” end. Terminal 2-, 4-, or 6-linked galactosyl residues were found attached to O-4 of the rhamnitol residues The 2-, 4-, and 6-linked galactosyl residues had terminal or 2-linked arabinosyl, or additional galactosyl, residues attached to them. Based on the results of fast-atom-bombardment mass spectrometry, the side chains were found to range in size from one to fourteen glycosyl residues. The side-chain structures suggest that there are four or more distinct families of side chains attached to the backbone of rhamnogalacturonan I.  相似文献   

16.
The cotyledon of the seed of Mirabilis jalapa was found to contain a d-glucan. Methylation, periodate oxidation, and graded and enzymic hydrolysis studies were conducted to elucidate its structure. For every 38 d-glucosyl residues therein, 34 are (1→4)- and 3 are (1→3)-linked; the d-glucosyl unit at the branch point is linked through O-1, O-2, and O-4. In some places in the chain, there are at least three (1→3)-linked d-glucosyl residues in a sequence. Both α- and β-d-glucosidic linkages are present in the polysaccharide, the former preponderating. The d-glucan gave with iodine a faint blue color that had λmax 420 nm.  相似文献   

17.
The husk from the seeds of Plantago ovata Forsk yielded two fractions when exposed to mild aikali, namely, the mucilage polysaccharide (85%, apparently a single species) and the non-polysaccharide component (15%). Methylation analysis and partial hydrolysis with acid showed the mucilage polysaccharide to be a highly branched, acidic arabinoxylan, the xylan backbone having both (1→4) and (1→3) linkages. The majority of the residues in the xylan backbone are variously substituted at O-2 and O-3 with arabinose, xylose, and an aldobiouronic acid identified as 2-O-(galactopyranosyluronic acid)-rhamnose. A structure incorporating these features for the husk polysaccharide is proposed.  相似文献   

18.
The structure of a dextran produced by Leuconostoc mesenteroides NRRL B-1397 has been investigated in relation to its immunological properties. The methylated dextran yielded on acid hydrolysis 2,3,4,6-tetra-, 2,3,4-tri-, 3,4,-di-, and 2,4-di-O-methyl-d-glucose, in the molar ratio of 1.0:3.1:0.7:0.2, together with a trace of 2,4,6-tri-O-methyl-dglucose, indicating that the branches occur mainly at O-2 and the remainder at O-3. A carboxyl-dextran, obtained by catalytic oxidation of the dextran to convert the terminal, non-reducing d-glucose residues d-glucuronic acid residues, was partially hydrolyzed with acid. Fractionation gave 2-O-(α-d-glucopyranosyluronic acid) d-glucose (major), 6-O-(α-d-glucopyranosyluronic acid)-d-glucose, and mixtures of aldotri-, aldotetra-, and aldopentaouronic acid that contain both (1 → 6)- and (1 → 2)-d-glucosidic linkages. It is concluded that the branches at O-2 are mainly single d-glucose units, whereas those occurring at O-3 may be longer than two glucose units, forming a highly branched structure having an average repeating- unit of 5 sugar residues.  相似文献   

19.
Using periodate oxidation, methylation analysis, the characterization of oligosaccharides obtained by partial acid hydrolysis, p.m.r. spectroscopy, and analytical ultracentrifugation, the structure of the (mildly alkali-treated) Klebsiella serotype 11 capsular polysaccharide has been elucidated. The tetrasaccharide repeating-unit comprises the sequence ?3)-β-D-Glcp-(1?3)-β-D-GlcUAp-(1?3)-α-D-Galp-(1→ with a 4,6-O-(1-car?yethylidene)-α-D-galactosyl residue linked to O-4 of the glucuronic acid residue. The structural basis for some serological cross-reactions of the Klebsiella K11 antigen is discussed, and it is shown that rabbit antisera against the Klebsiella K11 test-strain predominantly contain K agglutinins specific for branch-terminal 4,6-O-(1-car?yethylidene)-D-galactose.  相似文献   

20.
A water-soluble galactomannan (C-3), [α]D20 +30°, isolated from the rod-like ascocarps of Cordyceps cicadae, was determined to be homogeneous, and the molecular weight was estimated by gel filtration to be 27,000. The polysaccharide is composed of d-mannose and d-galactose in the molar ratio of 4:3. The results of methylation analysis, Smith degradation, stepwise hydrolysis with acid, and 13C-n.m.r. spectroscopy indicated that the polysaccharide is of highly branched structure, and composed of α-d-(1→2)-linked and α-d-(1→6)-linked mannopyranosyl residues in the core; some of these residues are substituted at O-6 and O-2 with terminal β-d-galactofuranosyl and α-d-mannopyranosyl groups, and with short chains of β-d-(1→2)-linked d-galactofuranosyl units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号