首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four strains of the coccolithophore Emiliania huxleyi (CCMP strains 370, 373, 374, 379) were tested for their ability to grow on various nitrogen sources. All strains grew on ammonium, nitrate, and urea, although growth of CCMP379 on urea was low. Responses to other dissolved organic nitrogen (DON) sources varied. CCMP379 did not grow on any DON source other than urea. All other strains grew on one of the two tested amino acids: CCMP370 and CCMP373 on glutamine, and CCMP374 on alanine. All three of these strains also grew on hypoxanthine; in addition, two grew well on acetamide and one on ethanolamine. E. huxleyi strains also differed in their susceptibility to predation by the ciliate Strobilidium sp. CCMP374 was ingested at substantially higher rates than CCMP373 regardless of E. huxleyi growth condition. Ciliate feeding rates also depended on E. huxleyi growth condition. For CCMP374, feeding rates were 2× higher on growing E. huxleyi cells than on non-growing cells (average 27.5 versus 15.6 cells ciliate−1 h−1, respectively). For CCMP373, a relationship between E. huxleyi growth rate and ciliate feeding rate was not evident, but E. huxleyi grown on some N sources (ammonium, nitrate, urea) were ingested at consistently higher rates than E. huxleyi grown on other sources (ethanolamine, glutamine). Interstrain differences in the ability to utilize DON and resist predation may contribute to maintenance of high genetic diversity within this cosmopolitan, bloom-forming species.  相似文献   

2.
3.
Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.  相似文献   

4.
Emiliania huxleyi is a globally important coccolithophore and one of the most successful eukaryotic organisms in the modern oceans. Despite a large body of work on this organism, including the sequencing of its genome, the tools required for forward and reverse functional genetic studies are still undeveloped. Here we present an optimized method for the clonal isolation of E. huxleyi by plating on solid medium. We demonstrate the utility of this method for a variety of strains including haploid, calcifying-diploid, and noncalcifying diploid strains. We show that, in contrast to previous studies, no changes in cell ploidy status occur when the cells are plated. Our method will greatly aid attempts to elucidate the genetic basis of the remarkable physiology of E. huxleyi by forward and reverse genetic approaches.  相似文献   

5.
Culture strains of Emiliania huxleyi (Lohmann 1902) Hay et al. 1967 were placed into two groups designated E. huxleyi type A and type B on the basis of coccolith morphology and immunological properties of the coccolith polysaccharide. We studied the distribution of these types in the North Atlantic region using an indirect immunofluorescence assay with antisera directed against the coccolith polysaccharide of E. huxleyi type A and type B and epifluorescence microscopy. In field samples taken in the Northeast Atlantic Ocean, E. huxleyi type A was found exclusively. In contrast, type B was dominant in the North Sea. Scanning electron microscopy of the samples revealed the same unequal distribution of the two types as found with the immunofluorescent-labelling assay.  相似文献   

6.
7.
8.
In many marine ecosystems, diatoms dominate in nutrient‐rich coastal waters while coccolithiophores are found offshore in areas where nutrients may be limiting. In lab‐controlled batch cultures, mixed‐species competition between the diatom Phaeodactylum tricornutum and the coccolithophore Emiliana huxleyi and the response of each species were examined under nitrate (N) and phosphate (P) starvation. Based on the logistic growth model and the Lotka–Volterra competition model, E. huxleyi showed higher competitive abilities than P. tricornutum under N and P starvation. For both species, cell growth was more inhibited by P starvation, while photosynthetic functions (chl a fluorescence parameters) and cellular constituents (pigments) were impaired by N starvation. The decline of photosynthetic functions occurred later in E. huxleyi (day 12) than in P. tricornutum (day 9); this time difference was associated with greater damage of the photosynthetic apparatus in P. tricornutum compared with E. huxleyi. Xanthophyll cycle pigment accumulation and the transformation from diadinoxanthin to diatoxanthin was more active in E. huxleyi than P. tricornutum, under similar N and P starvation. We concluded that E. huxleyi and P. tricornutum have different mechanisms to allocate resources and energy under nutrient starvation. It appears that E. huxleyi has a more economic strategy to adapt to nutrient depleted environments than P. tricornutum. These findings provided additional evidence explaining how N versus P limitation differentially support diatom and coccolithophore blooms in natural environments.  相似文献   

9.
The increasing rate of antimicrobial resistance drastically reduced the efficiency of conventional antibiotics and led to the reconsideration of the interspecies interactions in influencing bacterial virulence and response to therapy. The aim of the study was the investigation of the influence of the soluble and cellular fractions of Enterococcus (E.) faecium CMGB16 probiotic culture on the virulence and antibiotic resistance markers expression in clinical enteropathogenic Escherichia (E.) coli strains.The 7 clinical enteropathogenic E. coli strains, one standard E. coli ATCC 25,922 and one Bacillus (B.) cereus strains were cultivated in nutrient broth, aerobically at 37 °C, for 24 h. The E. faecium CMGB16 probiotic strain was cultivated in anaerobic conditions, at 37 °C in MRS (Man Rogosa Sharpe) broth, and co-cultivated with two pathogenic strains (B. cereus and E. coli O28) culture fractions (supernatant, washed sediment and heat-inactivated culture) for 6 h, at 37 °C. After co-cultivation, the soluble and cellular fractions of the probiotic strain cultivated in the presence of two pathogenic strains were separated by centrifugation (6000 rpm, 10 min), heat-inactivated (15 min, 100 °C) and co-cultivated with the clinical enteropathogenic E. coli strains in McConkey broth, for 24 h, at 37 °C, in order to investigate the influence of the probiotic fractions on the adherence capacity and antibiotic susceptibility. All tested probiotic combinations influenced the adherence pattern of E. coli tested strains. The enteropathogenic E. coli strains susceptibility to aminoglycosides, beta-lactams and quinolones was increased by all probiotic combinations and decreased for amoxicillin-clavulanic acid. This study demonstrates that the plurifactorial anti-infective action of probiotics is also due to the modulation of virulence factors and antibiotic susceptibility expression in E. coli pathogenic strains.  相似文献   

10.
Metacaspases are cysteine specific proteases implicated in cell-signalling, stress acclimation and programmed cell death (PCD) pathways in plants, fungi, protozoa, bacteria and algae. We investigated metacaspase-like gene expression and biochemical activity in the bloom-forming, N2-fixing, marine cyanobacterium Trichodesmium, which undergoes PCD under low iron and high-light stress. We examined these patterns with respect to in-silico analyses of protein domain architectures that revealed a diverse array of regulatory domains within Trichodesmium metacaspases-like (TeMC) proteins. Experimental manipulations of laboratory cultures and oceanic surface blooms of Trichodesmium from the South Pacific Ocean triggered PCD under Fe-limitation and high light along with enhanced TeMC activity and upregulated expression of diverse TeMC representatives containing different regulatory domains. Furthermore, TeMC activity was significantly and positively correlated with caspase-like activity, which has been routinely observed to increase with PCD induction in Trichodesmium. Although both TeMC and caspase-like activities were stimulated upon PCD induction, inhibitor treatments of these proteolytic activities provided further evidence of largely distinct substrate specificities, even though some inhibitory crossover was observed. Our findings are the first results linking metacaspase expression and activity in PCD induced mortality in Trichodesmium. Yet, the role/s and specific activities of these different proteins remain to be elucidated.  相似文献   

11.
12.
13.
Increasing anthropogenic carbon dioxide is causing changes to ocean chemistry, which will continue in a predictable manner. Dissolution of additional atmospheric carbon dioxide leads to increased concentrations of dissolved carbon dioxide and bicarbonate and decreased pH in ocean water. The concomitant effects on phytoplankton ecophysiology, leading potentially to changes in community structure, are now a focus of concern. Therefore, we grew the coccolithophore Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler and the diatom strains Thalassiosira pseudonana (Hust.) Hasle et Heimdal CCMP 1014 and T. pseudonana CCMP 1335 under low light in turbidostat photobioreactors bubbled with air containing 390 ppmv or 750 ppmv CO2. Increased pCO2 led to increased growth rates in all three strains. In addition, protein levels of RUBISCO increased in the coastal strains of both species, showing a larger capacity for CO2 assimilation at 750 ppmv CO2. With increased pCO2, both T. pseudonana strains displayed an increased susceptibility to PSII photoinactivation and, to compensate, an augmented capacity for PSII repair. Consequently, the cost of maintaining PSII function for the diatoms increased at increased pCO2. In E. huxleyi, PSII photoinactivation and the counter‐acting repair, while both intrinsically larger than in T. pseudonana, did not change between the current and high‐pCO2 treatments. The content of the photosynthetic electron transport intermediary cytochrome b6/f complex increased significantly in the diatoms under elevated pCO2, suggesting changes in electron transport function.  相似文献   

14.
The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, and Syracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.  相似文献   

15.
Recent reports suggest that the yeast Saccharomyces cerevisiae caspase‐related metacaspase, Mca1, is required for cell‐autonomous cytoprotective functions that slow cellular aging. Because the Mca1 protease has previously been suggested to be responsible for programmed cell death (PCD) upon stress and aging, these reports raise the question of how the opposing roles of Mca1 as a protector and executioner are regulated. One reconciling perspective could be that executioner activation may be restricted to situations where the death of part of the population would be beneficial, for example during colony growth or adaptation into specialized survival forms. Another possibility is that metacaspases primarily harbor beneficial functions and that the increased survival observed upon metacaspase removal is due to compensatory responses. Herein, we summarize data on the role of Mca1 in cell death and survival and approach the question of how a metacaspase involved in protein quality control may act as killer protein.  相似文献   

16.
Using primer pairs for seven previously described microsatellite loci and three newly characterized microsatellite loci from the coccolithophore Emiliania huxleyi (Lohm.) Hay and Mohler, we assessed genetic variation within this species. Analysis of microsatellite length variants (alleles) was conducted for 85 E. huxleyi isolates representative of different ocean basins. These results revealed high intraspecific genetic variability within the E. huxleyi species concept. Pairwise comparison of a 1992 Coastal Fjord group (FJ92) (n=41) and a North East Atlantic (NEA) group (n=21), using FST as an indicator of genetic differentiation, revealed moderate genetic differentiation (FST=0.09894; P=0; significance level=0.05). Gene flow between the FJ92 and NEA groups was estimated to be low, which is in agreement with the moderate levels of genetic differentiation revealed by the microsatellite data. A genetic assignment method that uses genotype likelihoods to draw inference about the groups to which individuals belong was tested. Using FJ92 and NEA as reference groups, we observed that all the E. huxleyi groups tested against the two reference groups were unrelated to them. On a global biogeographical scale, E. huxleyi populations appear to be highly genetically diverse. Our findings raise the question of whether such a high degree of intraspecific genetic diversity in coccolithophores translates into variability in ecological function.  相似文献   

17.
Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler is a cosmopolitan coccolithophore occurring from tropical to subpolar waters and exhibiting variations in morphology of coccoliths possibly related to environmental conditions. We examined morphological characters of coccoliths and partial mitochondrial sequences of the cytochrome oxidase 1b (cox1b) through adenosine triphosphate synthase 4 (atp4) genes of 39 clonal E. huxleyi strains from the Atlantic and Pacific Oceans, Mediterranean Sea, and their adjacent seas. Based on the morphological study of culture strains by SEM, Type O, a new morphotype characterized by coccoliths with an open central area, was separated from existing morphotypes A, B, B/C, C, R, and var. corona, characterized by coccoliths with central area elements. Molecular phylogenetic studies revealed that E. huxleyi consists of at least two mitochondrial sequence groups with different temperature preferences/tolerances: a cool‐water group occurring in subarctic North Atlantic and Pacific and a warm‐water group occurring in the subtropical Atlantic and Pacific and in the Mediterranean Sea.  相似文献   

18.
Yao  Shaochang  Luo  Shuzhen  Pan  Chunliu  Xiong  Weijiao  Xiao  Dong  Wang  Aiqin  Zhan  Jie  He  Longfei 《Plant and Soil》2020,448(1-2):479-494
Aims

Metacaspases are cysteine-dependent proteases, which play essential roles in programmed cell death (PCD), and caspase-3-like protease is the crucial executioner. However, its response mechanism to aluminum (Al)-induced PCD is still elusive.

Methods

Here, the type I metacaspase gene in peanut (Arachis hypoganea L.), AhMC1, was cloned from the Al-sensitive cultivar ZH2. Physiological and biochemical methods, as well as gene expression analyses, were employed to explore its function in Al-induced PCD in peanut root tips.

Results

AhMC1 had a 1068-bp open reading frame, encoding a peptide of 355 amino acids, and the purified protein exhibited a high caspase-3-like protease activity. Its expression levels in different tissues of peanut varieties ZH2 and 99–1507 (Al-tolerant) varied under Al-stress conditions. The subcellular localization indicated that AhMC1 was transferred from mitochondria into the cytoplasm. Furthermore, overexpressing AhMC1 reduced the resistance to Al stress. Sense transgenic plants showed a low relative root growth rate, and reduced superoxide dismutase, peroxidase, and catalase activities, compared with wild-type and antisense transgenic plants under Al-stress conditions, but had a high root-cell death rate, and increased Al and maleic dialdehyde contents.

Conclusions

The data suggest that metacaspase AhMC1 is a positive factor in Al-induced PCD in peanut root tips.

  相似文献   

19.
The effect of viral infection of Emiliania huxleyi (Lohman) Hay and Mohler on the concentration of intracellular reactive oxygen species (ROS), hydrogen peroxide (H2O2) excretion and cell photosynthetic capacity (CPC) was examined. During the crash of an E. huxleyi culture induced by viruses intracellular ROS concentrations were generally elevated and reached levels of approximately double those observed in non‐infected control cultures. H2O2 concentrations also increased in the media of the infected cultures from background levels of around 130 nM to approximately 580 nM while levels in the controls decreased. These data suggest that oxidative stress is elevated in infected cells. Although the precise mechanism for ROS production was not identified, a traditional defense related oxidative burst was ruled out, as no evidence of a rapid intracellular accumulation of ROS following addition of the virus was found. CPC declined substantially in the infected culture from a healthy 0.6–0 arbitrary units. Clearly infection disrupted normal photosynthetic processes, which could lead to the production of ROS via interruption of the electron transport chain at the PSII level. Alternatively, ROS may also be a necessary requirement for viral replication in E. huxleyi, possibly due to a link with viral‐induced cell death or associated with general death processes.  相似文献   

20.
The response of N (nitrate) starved cells of the diatom Phaeodactylum tricornutum and the coccolithophore Emiliania huxleyi to a pulse of new N were measured to investigate rapid cellular and photosynthetic recovery kinetics. The changes of multiple parameters were followed over 24 h. In P. tricornutum, the recovery of Fv/Fm (the maximum quantum yield of PS II) and σPSII (the functional absorption cross‐section for PSII) started within the first hour, much earlier than other parameters. Cellular pigments did not recover during the 24 h but the chlorophyll (chl) a/carotenoid ratios increased to levels measured in the controls. Cell division was independent of the recovery of chl a. In E. huxleyi, the recovery of Fv/Fm and σPSII started after an hour, synchronous with the increase in cellular organic N and chl a with pigments fully recovered within 14 h. P. tricornutum prioritized the recovery of its photosynthetic functions and cell divisions while E. huxleyi did not follow this pattern. We hypothesize that the different recovery strategies between the two species allow P. tricornutum to be more competitive when N pulses are introduced into N‐limited water while E. huxleyi is adapted to N scarce waters where such pulses are infrequent. These findings are consistent with successional patterns observed in coastal environments. This is one of only a few studies exploring recovery kinetics of cellular functions and photosynthesis after nitrogen stress in phytoplankton. Our results can be used to enhance ecological models linking phytoplankton traits to species diversity and community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号