首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. This work aimed to assess the potential of Geissospermum argenteum Woodson (Apocynaceae) as a reservoir of fruit fly (Diptera: Tephritidae) parasitoids (Hymenoptera) in an upland forest in Brazil.
  2. The study was conducted in a remnant of primary upland forest, in which were distributed 10 plots (0.5 ha each). All individuals of G. argenteum with diameters greater than 5 cm at a height of 1.3 m were inventoried. Two trees per plot were selected to assess the total production of fruit. Collectors were installed under the canopy projection of each tree. The fruits were counted and weighed in the field and were transported to the laboratory, to determine the dry mass. Samples of fruits were collected to investigate their infestation by fruit flies and percentage of parasitism.
  3. A total of 394 specimens of G. argenteum were identified in the 5 ha investigated area, of which only 126 produced fruits during the 12 months of the assessment. Production ranged from 59 to 2478 fruits per plant (0.59 and 19.73 kg of fresh mass, respectively). Fifty-nine fruit samples were collected from 44 plants, from which 7703 puparia were obtained. Only Anastrepha atrigona Hendel emerged from the puparia. The mean infestation rate was 554.9 puparia/kg of fruit (0.4–1628.6 puparia/kg). Four species of parasitoids were obtained, with mean percentage of parasitism of 2.27% (0.23–9.01%).
  4. Our results show that G. argenteum is a reservoir of fruit fly parasitoids, highlighting the importance of its conservation in native habitats, as well as its multiplication in areas close to commercial orchards.
  相似文献   

2.
The influence of parasitoids and soil compaction on pupation behavior of blow flies was examined in a host–parasitoid system involving Lucilia sericata (Meigen) (Diptera: Calliphoridae) and Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Larvae of L. sericata were introduced to containers with soil of different compaction levels, with or without parasitoids. Although females of N. vitripennis did not significantly affect the pupation depth of L. sericata, they increased the rate of pupal development by 15.0–23.7 h at 28.4 ± 1.2 °C, and increased the clumping of puparia. Pupation depth of L. sericata was negatively related to soil compaction; mean depth of pupation was 4.4 cm in uncompacted soil and 0.5 cm in high‐compaction soil. In high‐compaction soil, pupal development increased by 10.5–18.8 h at 25.2 ± 0.3 °C, and puparia were clumped. These results provide a framework for locating puparia in forensic investigations and releasing appropriate parasitoids for biological control of blow flies.  相似文献   

3.
Fruit flies are pests of great economic importance due to their quarantine pest status and losses recorded in West Africa. An inventory of parasitoids associated with fruit flies in mangoes, guavas, cashew, pepper and major wild fruit crops was carried out in northern-central Benin in 2005, 2006, and 2008. Tephritid parasitoids reared from field-collected fruits belonged to three families: Braconidae (97.2%), Eulophidae (1.6%) and Pteromalidae (1.2%). Fopius caudatus (Szépligeti) accounted for 73.8% of all the parasitoids and therefore was the most abundant and widely distributed parasitoid. The parasitism rate was 7.7%, with the highest recorded in wild fruit crop habitat. Ceratitis cosyra (Walker) (77%) was the fly host most commonly reared from fruits that produced F. caudatus. The recently introduced pest Bactrocera invadens Drew Tsuruta and White was rarely parasitized and only by Pachycrepoideus vindemmiae (Rondani) (Hymenoptera: Pteromalidae) at this time. This is the first report of the inventory of one native parasitoid species from B. invadens in Africa, especially in West Africa.  相似文献   

4.
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is a key pest of fruit trees in Syria and is attacked by the larval-pupal parasitoid, Aganaspis daci (Weld) (Hymenoptera: Figitidae). The seasonal population dynamics and distribution of A. daci were studied in surveys of orchards [Citrus reticulatum (clementine), Citrus sinensis (maourdi blood orange), Citrus paradise (grapefruit), C. sinensis (sweet orange), Eriobotrya japonica (loquat), Prunus persica (peach), Prunus domestica (plum), Malus domestica (apple), Figus carica (fig) and Psidium guajava (guava)] at eight locations along the coastal region of Syria, between November 2013 and November 2014. A total of 69.4?kg of infested fruits were sampled, yielding 4274 puparia. From these, 3173 emerged as C. capitata adults, 351 as hymenopteran parasitoids and 750 did not eclose. The parasitoids were identified as A. daci (Hymenoptera: Figitidae) and Psyttalia sp. (Szépligeti) (Hymenoptera: Braconidae). The predominant species was A. daci comprising 348 (99.1%) of the total number of parasitoids collected. Populations of A. daci were present from May 2014 to September 2014, and numbers increased with increasing temperature to peak at 32.05% and 34.01% parasitism in June and August 2014, respectively. Parasitoids were only retrieved from larvae reared from loquat, grapefruit, peach and guava with parasitism levels of 1.68%, 30.76%, 18.28% and 16.15%, respectively. These results are important because they suggest that populations of A. daci have potential to be used for biological control in integrated pest management programmes for C. capitata in the coastal region of Syria.  相似文献   

5.
The olive fruit fly, Bactrocera oleae (Tephritidae), is a significant threat to California's olive industry. As part of a classical biological control program started in 2002, the parasitoids Diachasmimorpha kraussii and D. longicaudata (Hymenoptera: Braconidae) were imported to California from laboratory colonies in Hawaii. Studies on their biology and behavior as parasitoids of the olive fruit fly were conducted in quarantine. Both species tend to oviposit into 2nd and young 3rd instars, with the offspring completing development in the flies’ puparia. Most eggs are deposited in the first two weeks of adult life. Observed lifetime fecundity was low, possibly as a consequence of the relatively poor quality of the harvested olives used as a host substrate. Both pre-imaginal development and adult longevity were limited at constant temperatures above 30°C, which may indicate that these species will have difficulty establishing in the warmest regions of California.  相似文献   

6.
At 21 °C,Spalangia nigra Latreille (Hymenoptera: Pteromalidae) averaged 29.3 days between exposure and emergence of 1st progeny from host house flies,Musca domestica L. (Diptera: Muscidae). At 27 °C, the average developmental time to 1st emergence was reduced to 26.6 days, and a majority of adult wasps emerged from host house fly puparia between 29 and 40 days postoviposition. The sex ratio of progeny ranged from 1.4 to 1.8 female-to-male, but all progeny of virgin females were male. Male wasps lived from 6.8–15 and females 11–17.8 days at 27 °C; honey as a food source increased longevity. No significant differences in parasitism byS. nigra were associated with host house fly pupal densities ranging from 1 to 200 pupae per female-male pair of wasps, but average percent parasitism decreased at host densities greater than 50. House fly pupae exposed to parasitism at ages ranging from 4 to 96 h did not differ in subsequent production of adult flies.S. nigra did not demonstrate preference for house flies or stable flies,Stomoxys calcitrans (L.) (Diptera: Muscidae) as hosts. The results of these studies indicate thatS. nigra may contribute significantly to previously unexplained mortality of house flies and stable flies.   相似文献   

7.
Seasonal abundance of resident parasitoids and predatory flies, and corresponding soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), densities were assessed in soybean fields from 2003 to 2006 at two locations in lower Michigan. Six parasitoid and nine predatory fly species were detected in 4 yr by using potted plants infested with soybean aphid placed in soybean fields. The parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) and the predatory flies Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae), and Allograpta obliqua Say (Diptera: Syrphidae) were most numerous. Generally, L. testaceipes was more abundant late in the soybean growing season, but it also occurred during soybean vegetative growth; A. obliqua was more abundant during vegetative growth; and A. aphidimyza was common throughout the season. Soybean plants were visually inspected to estimate densities of soybean aphid, mummified aphids, and immature predatory flies. From 2003 to 2006, parasitism rates were inversely correlated with aphid density: percentage of parasitism was always very low (< or = 0.1%) at high aphid densities (> 100 aphids per plant), and higher parasitism, up to 17%, was observed at very low aphid densities (< 1 aphid per plant). Populations of immature predatory flies, particularly A. aphidimyza, generally increased in soybean fields with increasing soybean aphid populations, but aphids always outnumbered immature flies by 100-21,000-fold when flies were detected. Rearing field-collected aphid in 2006 substantiated that parasitism varied widely, with parasitism in most cases < 10%. Based on findings of low parasitism and predation, positive response to changing aphid densities by predatory flies but not parasitoids, early season abundance primarily of predatory flies, and past findings on these taxa's diversity and abundance, we discuss the potential use of exotic parasitoids and predatory flies to enhance soybean aphid biological control.  相似文献   

8.
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is the most recent of four tephritid fruit fly species accidentally introduced into Hawaii. Although parasitoids have been released against other tephritid fruit fly species and have shown partial success in Hawaii, no parasitoids were released until 2004 to suppress populations of B. latifrons. The present study was conducted to document the parasitoid complex that has naturally established against B. latifrons in Hawaii and to assess whether there is a need for improving the biological control of this species. Based on ripe turkeyberry (Solanum torvum Sw) fruit collections over three consecutive years B. latifrons was the dominant tephritid fruit fly infestating turkeyberry at all four sites surveyed, across three major islands in Hawaii. The overall percentage parasitism of B. latifrons ranged from a low of 0.8% (Hana, Maui) to a high of 8.8% (Kahaluu, Oahu). Five primary parasitoid species were recovered from individually held B. latifrons puparia: Fopius arisanus (Sonan), Psyttalia incisi (Silvestri), Diachasmimorpha longicaudata (Ashmead), D. tryoni (Cameron), and Tetrastichus giffardianus Silvestri. F. arisanus was the predominant parasitoid at three of the four sites. Low levels of parasitism suggest that there is a need to improve biological control of B. latifrons, to minimize chances of this species causing economic impacts on crop production in Hawaii. We discuss the possibility of improving biological control of B. latifrons through augmentative releases of F. arisanus or introduction and release of specific and efficient new parasitoid species.  相似文献   

9.
Laboratory trials were conducted to determine whether the spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), puparium can provide an effective physical barrier to protect immature stages of the pupal parasitoid Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae) from spinosad treatments. Spinosad insecticides are currently an important suppression strategy for D. suzukii in organically managed fruit orchards although they are well known to cause mortality in hymenopteran parasitoids. High adult P. vindemiae female mortality (83%) occurred within 24 h of exposure to D. suzukii pupae treated with 10 mg a.i. l?1 spinosad and female parasitoids did not avoid the pupae treated with similar low levels of spinosad in choice tests that included untreated pupae. Pachycrepoideus vindemiae develops as an idiobiont ectoparasitoid on host fly pupa within the sclerotized host puparium. Significant P. vindemiae survival and emergence was recorded when parasitized D. suzukii puparia were exposed to field treatment levels of spinosad; however, the parasitoid survival was dependent on the time of the spinosad treatment of the host post‐parasitization. Significant parasitoid survival occurred when the host puparia were treated at 2 weeks when the parasitoid was in the pupal stage but did not occur when the host puparia were treated at 1 week post‐parasitization, when the parasitoids were still in a larval stage. The parasitoid adults consumed or otherwise came in contact with residual degrading spinosad when they exited the treated host, and consequently high and low adult parasitoid mortality occurred when the adults emerged from puparia treated at 2 and 1 week(s), respectively. Our study indicates that generally the integration of P. vindemiae parasitism into a sustainable D. suzukii management program is not compatible with spinosad treatments, although P. vindemiae in the pupal stage inside sclerotized host puparia appear to be minimally impacted by spinosad treatments, provided that the spinosad degrades before parasitoid emergence.  相似文献   

10.
Many sandy beaches worldwide receive large amounts of drift seaweed, known as wrack, from offshore algal beds and closer rocky intertidal shores. Despite the important influence of algal wrack on macrofaunal assemblages from different coastal systems, relatively little attention has been paid to the macrofaunal responses in sandy beaches to macrophyte wrack supplies. Algal wrack is a key resource, i.e. for food and/or refuge, for beach invertebrates while its availability can affect diversity and abundance of intertidal animals including shorebirds, but the role of certain types of wrack and its location on the shore has not been examined experimentally to date. In this paper, we use experimental manipulation of two species of brown seaweeds, i.e. artificial wrack patches made up of the native macroalgae Saccorhiza polyschides and the invasive species Sargassum muticum, to test hypotheses about influences on macrofaunal assemblages inhabiting the drift line and supratidal levels of exposed beaches. Results pointed out that different types of wrack deposits were not used uniformly by invertebrates. Nutritional value differed between the two species of wrack. In most cases, the carbohydrates, lipids and organic carbon content were greater in patches of S. muticum than in patches of S. polyschides. Data also provided evidences that nutritional content and microclimatic conditions of wrack deposits, i.e. temperature and humidity, might affect macrofaunal assemblages.  相似文献   

11.
Applications of a commercially produced Beauveria bassiana product, balEnce, were compared with pyrethrin treatments for the control of adult house flies in New York high-rise, caged-layer poultry facilities. An integrated fly management program, which included the release of house fly pupal hymenopteran parasitoids, was used at all facilities. Adult house fly populations were lower in B. bassiana-treated facilities during the spray and post-spray periods, as recorded on spot cards. Concurrently, the numbers of house fly larvae recovered in B. bassiana-treated facilities were less than one-half that of the pyrethrin-treated facilities. House fly pupal parasitism levels were low, but similar under both treatment regimes. The numbers of adult and larval Carcinops pumilio, a predatory beetle, recovered from B. bassiana-treated facilities were 43 and 66% greater than from the pyrethrin-treated facilities, respectively.  相似文献   

12.
Indoor releases of Spalangia cameroni Perkins and Muscidifurax raptor Girauelt & Sanders (Hymenoptera: Pteromalidae) were conducted in five organic dairy cattle farms to evaluate the overall effect on parasitism and efficiency at different pupal depths of Musca domestica L. (Diptera: Muscidae). Overall, parasitism increased significantly from 5.3 to 28.8–28.7% of the exposed house fly pupae due to the release of pupal parasitoids. Spalangia cameroni was by far the most dominant species, contributing approximately 71.5–72.3% of the parasitism in the release and post-release period, whereas 20.9–24.4% could be attributed to Muscidifurax raptor. A naturally occurring ichneumonid, Phygadeuon fumator Gravenhorst (Hymenoptera: Ichneumonidae) parasitized 4.1–6.8% of the exposed fly pupae. The placement of house fly pupae at two depths of the bedding, 5–10 and 15–20 cm had no significant effect on overall parasitism whereas M. raptor attacked the house fly pupae significantly more when placed in the 5–10 cm stratum (10.0%) compared to the 15–20 cm stratum (3.2%). The two pupal depths had no significant effect on parasitism by S. cameroni and P. fumator. Albeit S. cameroni contributed significantly to overall parasitism, M. raptor had a significantly higher attack rate when first a female had located bags with sentinel pupae. Based on the above results, however, S. cameroni seems the most appropriate species for managing house flies in straw bedded dairy cattle farms in Denmark. A biological control strategy of simultaneous releases of S. cameroni and M. raptor is discussed.  相似文献   

13.
The earwig Euborellia annulipes (Lucas) (Dermaptera: Anisolabididae), a generalist predator, has been observed in fruits infested with fruit fly larvae, which are frequently parasitized by parasitoid wasps. Neither the capacity of earwigs to predate on fruit flies nor intraguild interactions between earwigs and fruit fly parasitoids have been investigated. Here, we studied in laboratory conditions the predation on the fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) by the earwig E. annulipes, and whether parasitism of fruit fly larvae by the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) influences predation by the earwig. We evaluated the predation capacity, functional response and prey preference of E. annulipes for parasitized and non-parasitized fruit fly larvae in choice and no-choice tests. We found that earwigs prey on second- and third-instar larvae and pupae of C. capitata and consumed larger numbers of second-instar larvae, followed by third-instar larvae and pupae. Females prey on larger numbers of fruit flies than did males, regardless of the prey developmental stage, but both sexes exhibited a type II functional response. Interestingly, males killed but did not consume fruit fly larvae more than did females. In no-choice tests, earwig females consumed equal numbers of parasitized and non-parasitized fruit fly larvae. However, in choice tests, the females avoided feeding on parasitized larvae. Subsequent tests with hexane-washed parasitized and non-parasitized larvae showed that putative chemical markings left on fruit flies by parasitoids did not drive the earwig preference towards non-parasitized larvae. These findings suggest that E. annulipes is a potential biological control agent for C. capitata, and that, because the earwig avoids consuming larvae parasitized by D. longicaudata, a combination of the two natural enemies could have an additive effect on pest mortality.  相似文献   

14.
Diachasmimorpha longicaudata (Ashmead) parasitoids were released by air on a weekly basis over 1600 ha of commercial mango orchards, backyard orchards, and patches of native vegetation, at a density of ca. 940 parasitoids/ha. Releases were made during 2 consecutive years, beginning at flower onset and lasting until the end of the production cycle. Two areas, 7 km apart, were compared. In one area parasitoids were released, whereas the other area was used as a control. During the 2nd year treatments were reversed. Fruit was sampled in commercial mango orchards and in backyard orchards to assess levels of parasitism in fruit fly larvae. Highly significant differences in percentage parasitism were found in release and control zones in backyard orchards. Furthermore, trapping results indicated that D. longicaudata releases were associated with ca. 2.7-fold suppression of Anastrepha spp. populations in backyard orchards. Results suggest that suppression might be affected by environmental conditions and by the parasitoid:fly ratio achieved. Anastrepha obliqua McQuart populations were suppressed more effectively by use of parasitoids than those of Anastrepha ludens Loew, perhaps due to the type of host fruits used by each species. Augmentative parasitoid releases in marginal areas surrounding commercial orchards (backyard orchards, wild vegetation) can substantially suppress fly populations. Through this approach, the number of flies that later move into commercial orchards can be significantly reduced. Such a strategy, when combined with sound orchard management schemes, can allow growers to produce clean fruit without the need to resort to the widespread use of insecticides.  相似文献   

15.
Throughout the winter and early spring months, stable fly, Stomoxys calcitrans (L.), and house fly, Musca domestica L., puparia were collected from silage, hay, and manure from six dairies in northwestern Florida and evaluated for parasitism. Of the puparia producing flies or parasites, 23% of the stable flies and 46% of the house flies were parasitized. The predominant parasite observed attacking muscoid flies (76% for stable flies and 58% for house flies) was Spalangia cameroni Perkins. Muscidifurax sp. was recovered from 11 and 36% of the stable fly and house fly pupae, respectively. Other parasite species encountered were Spalangia endius Walker and S. nigroaenea Curtis. Significantly more parasitized fly pupae were collected from silage than from hay residues or manure. Winter and early spring parasite populations in northwestern Florida appear to be present as long as viable fly pupae are available to support the developing parasites.  相似文献   

16.
Hausmann  Johannes  Heimbach  Udo  Rostás  Michael  Brandes  Meike 《BioControl》2021,66(6):765-777

Dropleg sprayers apply pesticides below the flower horizon of oilseed rape plants and thus reduce unwanted side effects on pollinating insects. Whether this technique benefits parasitoids of seed and pollen feeding insect pests has not been studied earlier. To answer this question, we first assessed the vertical distribution of pests and parasitoids using a portable aspirator. In addition, parasitism rates of pollen beetle, Brassicogethes aeneus Fabricius (Coleoptera: Nitidulidae), by the larval parasitoid Tersilochus heterocerus Thomson (Hymenoptera: Ichneumonidae) were compared in conventional and dropleg sprayed fields over four years (2016–2019), using the neonicotinoids thiacloprid and acetamiprid. Our results show that seed and pollen feeders were mainly found in the flowering canopy, while the predominant location of parasitoids was species-specific. Among pollen beetle parasitoids, Phradis interstitialis Thomson (Hymenoptera: Ichneumonidae) was more abundant below flowering canopy (63% of total catch), whereas T. heterocerus was mainly caught in the flowering canopy (84% of total catch). In the spraying experiments, average parasitism rates of pollen beetles by T. heterocerus ranged between 55 and 82% in the untreated controls. In the dropleg spray treatments, parasitism rates did not differ significantly from control levels, with the exception of thiacloprid application in 2019. In contrast, conventional spray applications resulted in a reduction of parasitism rates by up to 37% compared to the control for at least one of the insecticides in three out of four years. The impact of conventional application differed between years, which may be explained by the temporal coincidence between spray application and the immigration of parasitoids into the crop. We conclude that dropleg spraying exerts lower non-target effects on the main biological control agent of pollen beetle.

  相似文献   

17.
  1. Spatial patterns of parasitism of eumenid wasps Anterhynchium flavomarginatum and Orancistrocerus drewseni by the miltogrammine fly Amobia distorta were studied in Kyoto, Japan during 1980–1984.
  2. In generations of low (<5%) and medium (5–20%) parasitism, percent parasitism per shed (the habitat of the hosts) increased as a function of host density. Conversely, in generations of high (>20%) parasitism, percent parasitism was rather constant over different host densities.
  3. The spatial distributions of adult miltogrammine flies among sheds were censused in generations of low and medium parasitism. The frequency of observations of adult miltogrammine flies was higher at sheds of higher host density (aggregative behavioral response), but on the other hand, the adult miltogrammine flies distributed in an underdispersed (or regular) manner in relation to other conspecifics.
  4. The spatially density independent relationship between host density and percent parasitism in generations of high parasitism was explained in relation to parasitoid dispersal from patches of high parasitoid density.
  相似文献   

18.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest of maize in North and South America. It was first reported from Africa in 2016 and currently established as a major invasive pest of maize. A survey was conducted to explore for natural enemies of the fall armyworm in Ethiopia, Kenya and Tanzania in 2017. Smallholder maize farms were randomly selected and surveyed in the three countries. Five different species of parasitoids were recovered from fall armyworm eggs and larvae, including four within the Hymenoptera and one Dipteran. These species are new associations with FAW and were never reported before from Africa, North and South America. In Ethiopia, Cotesia icipe was the dominant larval parasitoid with parasitism ranging from 33.8% to 45.3%, while in Kenya, the tachinid fly, Palexorista zonata, was the primary parasitoid with 12.5% parasitism. Charops ater and Coccygidium luteum were the most common parasitoids in Kenya and Tanzania with parasitism ranging from 6 to 12%, and 4 to 8.3%, respectively. Although fall armyworm has rapidly spread throughout these three countries, we were encouraged to see a reasonable level of biological control in place. This study is of paramount importance in designing a biological control program for fall armyworm, either through conservation of native natural enemies or augmentative release.  相似文献   

19.
The ecology of parasitoids is strongly influenced by their host plant species. Parasitoid fitness can be affected by a variety of plant traits that could promote phenotypic differentiation among populations of parasitoids. Generalist parasitoids are expected to be more affected by plant traits (e.g., plant defensive traits) than specialist parasitoids. Data are presented on phenotypic differences of two braconid parasitoid wasps ovipositing on the same insect host species on two different host plant species. Adult mass, adult longevity, and percent parasitism are compared for the generalist parasitoid Cotesia marginiventris Cresson and the specialist parasitoid Aleiodes nolophanae Ashmead (both Hymenoptera: Braconidae) emerging from green cloverworms, Hypena scabra Fabricius (Lepidoptera: Noctuidae), feeding on two host plant species, alfalfa (Medicago sativa L.) and soybean (Glycine max L. Merr.) (both Fabaceae), at three locations. Specialist wasps that parasitized the green cloverworm on alfalfa had a significantly larger mass than the ones that parasitized the green cloverworm on soybean at the three study sites. Generalist wasps that parasitized green cloverworms on alfalfa had a larger mass than wasps parasitizing green cloverworms on soybean only at one of the study sites (i.e., Prince George's County, MD, USA). Similarly, both specialist and generalist wasps lived longer when parasitizing green cloverworms on alfalfa than when parasitizing them on soybean at only one of the study sites (i.e., Prince George's County). In Prince George's County, percent parasitism on alfalfa by the specialist parasitoid was higher than on soybean for three consecutive years and percent parasitism by the generalist parasitoid was the same on alfalfa and soybean every year. Thus, phenotypic differences among populations associated with different host plant species vary geographically (i.e., parasitoid phenotype associated with different host plant species differ at some sites while it is the same at other sites). The implications of geographic variation for biological control are discussed.  相似文献   

20.
Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号