首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Because the secondary plastids of the Euglenophyta and Chlorarachniophyta are very similar to green plant plastids in their pigment composition, it is generally considered that ancestral green algae were engulfed by other eukaryotic host cells to become the plastids of these two algal divisions. Recent molecular phylogenetic studies have attempted to resolve the phylogenetic positions of these plastids; however, almost all of the studies analyzed only plastid‐encoded genes. This limitation may affect the results of comparisons between genes from primary and secondary plastids, because genes in endosymbionts have a higher mutation rate than the genes of their host cells. Thus, the phylogeny of these secondary plastids must be elucidated using other molecular markers. Here, we compared the plastid‐targeting, nuclear‐encoded, oxygen‐evolving enhancer (psbO) genes from various green plants, the Euglenophyta and Chlorarachniophyta. A phylogenetic analysis based on the PsbO amino acid sequences indicated that the chlorarachniophyte plastids are positioned within the Chlorophyta (including Ulvophyceae, Chlorophyceae, and Prasinophyceae, but excluding Mesostigma). In contrast, plastids of the Euglenophyta and Mesostigma are positioned outside the Chlorophyta and Streptophyta. The relationship of these three phylogenetic groups was consistent with the grouping of the primary structures of the thylakoid‐targeting domain and its adjacent amino acids in the PsbO N‐terminal sequences. Furthermore, the serine‐X‐alanine (SXA) motif of PsbO was exactly the same in the Chlorarachniophyta and the prasinophycean Tetraselmis. Therefore, the chlorarachniophyte secondary plastids likely evolved from the ancestral Tetraselmis‐like alga within the Chlorophyta, whereas the Euglenophyte plastids may have originated from the unknown basal lineage of green plants.  相似文献   

3.
4.
5.
6.
7.
8.
A majority of the proteins of the chloroplast are encoded by the nuclear genome, and are post‐translationally targeted to the chloroplast. From databases of tagged insertion lines at international seed stock centers and our own stock, we selected 3246 Ds/Spm (dissociator/suppressor–mutator) transposon‐ or T‐DNA‐tagged Arabidopsis lines for genes encoding 1369 chloroplast proteins (about 66% of the 2090 predicted chloroplast proteins) in which insertions disrupt the protein‐coding regions. We systematically observed 3‐week‐old seedlings grown on agar plates, identified mutants with abnormal phenotypes and collected homozygous lines with wild‐type phenotypes. We also identified insertion lines for which no homozygous plants were obtained. To date, we have identified 111 lines with reproducible seedling phenotypes, 122 lines for which we could not obtain homozygotes and 1290 homozygous lines without a visible phenotype. The Chloroplast Function Database presents the molecular and phenotypic information obtained from this resource. The database provides tools for searching for mutant lines using Arabidopsis Genome Initiative (AGI) locus numbers, tagged line numbers and phenotypes, and provides rapid access to detailed information on the tagged line resources. Moreover, our collection of insertion homozygotes provides a powerful tool to accelerate the functional analysis of nuclear‐encoded chloroplast proteins in Arabidopsis. The Chloroplast Function Database is freely available at http://rarge.psc.riken.jp/chloroplast/ . The homozygous lines generated in this project are also available from the various Arabidopsis stock centers. We have donated the insertion homozygotes to their originating seed stock centers.  相似文献   

9.
Niemann‐Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by over‐accumulation of low‐density lipoprotein‐derived cholesterol and glycosphingolipids in late endosomes/lysosomes (LE/L) throughout the body. Human mutations in either NPC1 or NPC2 genes have been directly associated with impaired cholesterol efflux from LE/L. Independent from its role in cholesterol homeostasis and its NPC2 partner, NPC1 was unexpectedly identified as a critical player controlling intracellular entry of filoviruses such as Ebola. In this study, a yeast three‐hybrid system revealed that the NPC1 cytoplasmic tail directly interacts with the clathrin adaptor protein AP‐1 via its acidic/di‐leucine motif. Consequently, a nonfunctional AP‐1A cytosolic complex resulted in a typical NPC‐like phenotype mainly due to a direct impairment of NPC1 trafficking to LE/L and a partial secretion of NPC2. Furthermore, the mislocalization of NPC1 was not due to cholesterol accumulation in LE/L, as it was not rescued upon treatment with Mβ‐cyclodextrin, which almost completely eliminated intracellular free cholesterol. Our cumulative data demonstrate that the cytosolic clathrin adaptor AP‐1A is essential for the lysosomal targeting and function of NPC1 and NPC2.  相似文献   

10.
11.
12.
13.
Immunolocalization of glycine‐rich and cysteine–glycine‐medium‐rich beta‐proteins (Beta‐keratins) in snake epidermis indicates a different distribution between beta‐ and alpha‐layers. Acta Zoologica, Stockholm. The epidermis of snakes consists of hard beta‐keratin layers alternated with softer and pliable alpha‐keratin layers. Using Western blot, light and ultrastructural immunolocalization, we have analyzed the distribution of two specific beta‐proteins (formerly beta‐keratins) in the epidermis of snakes. The study indicates that the antibody HgG5, recognizing glycine‐rich beta‐proteins of 12–15 kDa, is poorly or not reactive with the beta‐layer of snake epidermis. This suggests that glycine‐rich proteins similar to those present in lizards are altered during maturation of the beta‐layer. Conversely, a glycine–cysteine‐medium‐rich beta‐protein (HgGC10) of 10–12 kDa is present in beta‐ and alpha‐layers, but it is reduced or disappears in precorneous and suprabasal cells destined to give rise to beta‐ and alpha‐cells. Together with the previous studies on reptilian epidermis, the present results suggest that beta‐proteins rich in glycine mainly accumulate on a scaffold of alpha‐keratin producing a resistant and hydrophobic beta‐layer. Conversely, beta‐proteins lower in glycine but higher in cysteine accumulate on alpha‐keratin filaments present in beta‐ and alpha‐layers producing resistant but more pliable layers.  相似文献   

14.
Endocrine data and characteristics of nonconceptive ovarian cycling and pregnancy are limited within the genus Callithrix to the common marmoset (C. jacchus) and Wied's black tufted‐ear marmoset (C. kuhlii). This article presents patterns of urinary pregnanediol‐3‐glucuronide (PdG) excretion, as determined by enzyme immunoassay, throughout the course of ovarian cycling and pregnancy in white‐faced marmosets (C. geoffroyi). Furthermore, characteristics of reproductive parameters including litter size, duration of gestation, maternal age, and information about ovarian cycling following administration of contraceptives are also described. A steep increase in PdG, an indication of ovulation, characterizes normative ovarian cycles, with peak‐to‐peak intervals between cycles being 27.82 ± 1.49 days in length. PdG excretion (μg/mg Cr) across pregnancy peaked during the 1st and 2nd trimesters (1st = 20.71 ± 2.98, 2nd = 21.16 ± 2.60) and declined gradually to near preconception levels over the 3rd trimester until parturition (3rd = 5.74 ± 1.60). Gestation lasted 148.55 ± 1.89 days. Most pregnancies (82.8%) resulted in an immediate postpartum ovulation (PPO) of 17.45 ± 2.22 days with 58.3% of PPOs resulting in conception. No differences in PdG excretion during the 1st trimester between full pregnancies and miscarriages were found, and pregnancy characteristics such as litter size, duration of gestation, and maternal age were not associated with PdG concentrations. Administration of cloprostenol resulted in shorter peak‐to‐peak cycle durations, but ovulation was detectable with similar concentrations of peak PdG to a normal nonconceptive cycle. Conversely, medroxyprogesterone acetate (DMPA) injections resulted in little to no PdG excretion across the ovarian cycle. Both methods of contraception providing effective prevention of conception. Overall, these results show that strong similarities in reproductive parameters persist within the genus Callithrix and to a lesser extent across the Callitrichidae family. Am. J. Primatol. 74:1044‐1053, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
Identification of discrete and unique assemblages of individuals or populations is central to the management of exploited species. Advances in population genomics provide new opportunities for re‐evaluating existing conservation units but comparisons among approaches remain rare. We compare the utility of RAD‐seq, a single nucleotide polymorphism (SNP) array and a microsatellite panel to resolve spatial structuring under a scenario of possible trans‐Atlantic secondary contact in a threatened Atlantic Salmon, Salmo salar, population in southern Newfoundland. Bayesian clustering indentified two large groups subdividing the existing conservation unit and multivariate analyses indicated significant similarity in spatial structuring among the three data sets. mtDNA alleles diagnostic for European ancestry displayed increased frequency in southeastern Newfoundland and were correlated with spatial structure in all marker types. Evidence consistent with introgression among these two groups was present in both SNP data sets but not the microsatellite data. Asymmetry in the degree of introgression was also apparent in SNP data sets with evidence of gene flow towards the east or European type. This work highlights the utility of RAD‐seq based approaches for the resolution of complex spatial patterns, resolves a region of trans‐Atlantic secondary contact in Atlantic Salmon in Newfoundland and demonstrates the utility of multiple marker comparisons in identifying dynamics of introgression.  相似文献   

17.
Chen Wang  Lukasz Kurgan 《Proteomics》2016,16(10):1486-1498
Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty‐by‐association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (~548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA‐binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA‐binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation.  相似文献   

18.
19.
20.
Uridine 5′‐diphosphate (UDP)‐glucose is transported into the lumen of the endoplasmic reticulum (ER), and the Arabidopsis nucleotide sugar transporter AtUTr1 has been proposed to play a role in this process; however, different lines of evidence suggest that another transporter(s) may also be involved. Here we show that AtUTr3 is involved in the transport of UDP‐glucose and is located at the ER but also at the Golgi. Insertional mutants in AtUTr3 showed no obvious phenotype. Biochemical analysis in both AtUTr1 and AtUTr3 mutants indicates that uptake of UDP‐glucose into the ER is mostly driven by these two transporters. Interestingly, the expression of AtUTr3 is induced by stimuli that trigger the unfolded protein response (UPR), a phenomenon also observed for AtUTr1, suggesting that both AtUTr1 and AtUTr3 are involved in supplying UDP‐glucose into the ER lumen when misfolded proteins are accumulated. Disruption of both AtUTr1 and AtUTr3 causes lethality. Genetic analysis showed that the atutr1 atutr3 combination was not transmitted by pollen and was poorly transmitted by the ovules. Cell biology analysis indicates that knocking out both genes leads to abnormalities in both male and female germ line development. These results show that the nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP‐glucose into the ER, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号