共查询到20条相似文献,搜索用时 15 毫秒
1.
The eastern sedge frog Litoria fallax (Anura: Hylidae) is common throughout the open forests and coastal wetlands along the eastern coast of Australia. Its range spans four biogeographical zones from northern Queensland to central New South Wales. Phylogenetic analysis of mitochondrial DNA (mtDNA) haplotypes of 87 L. fallax individuals from 22 populations identified two major mtDNA lineages, differing by 11-12% sequence divergence. The two clades of haplotypes were separated by the McPherson Range, indicating that this mesic upland area has acted as a major long-term barrier to gene flow for this open forest species. Slight isolation by distance was observed within both the northern and southern lineages but was insufficient to explain the large sequence divergence between lineages. Within the northern lineage, additional phylogeographical structure was observed across the relatively dry Burdekin Gap which separates Atherton populations from all populations in the central and eastern Queensland biogeographical zones. There was less phylogeographical structure in the southern lineage suggesting historical gene flow across the drier portions of the Great Dividing Range. These data, together with recent observations of deep phylogeographical divergences in rainforest-restricted Litoria suggest that the east coast hylids of Australia represent an old (Tertiary) radiation. Individual species of Litoria have been strongly affected by climatic and ecological barriers to gene flow during the Quaternary. 相似文献
2.
PEDRO M. PEDRO MARIA A. M. SALLUM 《Biological journal of the Linnean Society. Linnean Society of London》2009,97(4):854-866
Extensive population structuring is known to occur in Anopheles darlingi , the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation–dispersal–drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 854–866. 相似文献
3.
Dorothea Kimpel Julia Gockel Gabriele Gerlach Olaf R. P. Bininda‐Emonds 《Freshwater Biology》2015,60(7):1364-1378
- Like many other zooplankton species, individual species of planktonic freshwater rotifers often possess a cosmopolitan distribution despite inhabiting isolated habitats (e.g. ponds or lakes) that present little opportunity for direct gene flow. This ‘everything is everywhere’ distribution is typically ascribed to aspects of the life history of these animals (heterogonic reproductive strategy) in combination with the high dispersal capabilities presented by a dormant stage (resting eggs).
- Recent molecular analyses indicate the presence of strong population structuring in many rotifer species, including both phylogeographic structuring and the potential for cryptic speciation. Building on these studies, we investigated the intraspecific genetic structuring in the mitochondrial barcoding marker cytochrome c oxidase subunit I (COI) among mid‐European populations of the cosmopolitan rotifer Synchaeta pectinata (Rotifera, Monogononta). These data were analysed using a combination of phylogenetic analysis and haplotype networks as well as population‐genetic methods to assess the degree of population and geographic structuring.
- Gene flow among four neighbouring populations in north‐west Germany (126 individuals; regional scale) and between them and a set of populations from northern Italy (an additional 48 individuals based on literature data; mid‐European scale) was generally low. Paradoxically, however, higher genetic similarity occurred across the broader mid‐European scale than within the regional scale. Nevertheless, no significant correlation with spatial distance was detected at the former scale, rejecting an isolation‐by‐distance model for population differentiation.
- Most populations comprised several distinct haplotype clusters, each corresponding to ancient mitochondrial lineages of S. pectinata. Although it is common to infer cryptic speciation from results such as these, the pattern we observed can also arise through historical colonisation events and/or persistent founder effects (Monopolization hypothesis) and we present potential arguments against the default assumption that S. pectinata comprises a complex of cryptic species.
4.
Álvaro Zúñiga‐Reinoso Viviane Jerez Jorge Avaria‐Llautureo Cristián E. Hernández 《Biological journal of the Linnean Society. Linnean Society of London》2016,117(4):705-715
The Last Glacial Maximum (LGM) has affected the population size and spatial distribution of a number of organisms in southern Patagonia. It has been hypothesized that species were able to persist in isolated refuges, which has generated processes of population expansion and genetic structure of populations after the LGM. In the present study, we evaluate these hypotheses and their association with local morphotypes in the endemic species Nyctelia confusa, a coleopteran that has low vagility and restricted distribution in the region. Accordingly, sixty‐nine specimens were sequenced for the gene for mitochondrial cytochrome c oxidase I. Effective population size was estimated through time, along with population structure and the phylogenetic signal of the morphs. The results suggest the existence of recent population expansion (10 Kyr BP), although there was no evidence of population structure or the phylogenetic signal for the described morphs. We propose that, during the LGM, N. confusa survived in multiple refuges, probably in the oriental slopes of the Andes range. The surviving populations would have expanded once the steppe was re‐established after the glaciers receded. This may have produced various secondary contact zones, homogenizing the genetic diversity, which would explain the observed pattern of panmixia. The morphological differentiation reported previously may be a result of local ecological adaptation not associated with the historical events of the LGM. 相似文献
5.
The population structure of the edible Atlanto-Mediterranean sea urchin Paracentrotus lividus is described by analysing sequence variation in a fragment of the mitochondrial gene cytochrome c oxidase subunit I in 127 individuals from 12 localities across south-west Europe. The study revealed high levels of genetic diversity but low levels of genetic structure, suggesting a large degree of gene flow between populations and panmixis within each, the Mediterranean and Atlantic basins. However, we found significant genetic differentiation between the two basins probably due to restricted gene flow across the geographical boundary imposed by the area of the Strait of Gibraltar. Populations of P. lividus appeared to have experienced a recent demographic expansion in the late Pleistocene. We provide new evidence on the population structure of this commercial species, predicting a healthy stock of this sea urchin on the Mediterranean and Atlantic coasts. 相似文献
6.
Francine Cenzi De Ré Emanuele C. Gustani Ana Paula F. Oliveira Luciana P. B. Machado Rogério P. Mateus Elgion L. S. Loreto Lizandra J. Robe 《Biological journal of the Linnean Society. Linnean Society of London》2014,112(1):55-66
The Quaternary period was marked by considerable changes in climate. Such palaeoclimatic changes affected the population dynamics of many species, both in the Northern and in the Southern Hemisphere. However, the extent of these impacts on the demographic patterns of Neotropical species presenting different ecological requirements remains unclear. Drosophila maculifrons DUDA 1947 belongs to the guaramunu group of Drosophila and represents a potential indicator of the genetic consequences caused by the climatic fluctuations of the Quaternary, because it seems to be sensitive to temperature and humidity shifts. The aim of this study was to evaluate the evolutionary processes subjacent to the patterns of intraspecific diversity and structure of different populations of D. maculifrons. In total, 152 individuals were collected in the south and south‐east Brazil. Phylogenetic and phylogeographical analyses were performed based on sequences of COI and COII mitochondrial genes. In general, the results pointed to Brazilian populations of D. maculifrons being extremely impoverished in terms of mitochondrial diversity and population structure, which could be explained by a recent population expansion event dated to approximately 12 000 years ago. In fact, with the assistance of species palaeo‐distribution modelling strategies, it was possible to infer that most of the sampled region did not present the D. maculifrons environmental suitability requirements at least during the period of the Last Glacial Maximum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 55–66. 相似文献
7.
A. K. Hundsdoerfer M. Wink 《Journal of Zoological Systematics and Evolutionary Research》2006,44(4):316-322
Hyles t. tithymali on the Canary Islands has been observed to occur in two larval morphotypes, connected by intermediate forms along a geographical cline from east to west. In this study, it was tested whether this distribution of phenotypes reflects a genealogical division of the population. mtDNA sequence data (COI + II, tRNA-leu) and genomic fingerprints from intersimple sequence repeat (ISSR)-PCR data were used. The sequence data had low variation (max. 0.4%), and phylogenetic analyses did not reveal groups that correlated with the morphotype. The samples did not group according to their island of origin and the most common haplotype was shared among all islands. Although nine haplotypes occurred only on the westernmost islands, the data showed little phylogeographical structure. The population of H. t. tithymali appears to reflect a comparatively rapid and recent colonization event of the Canary Islands. The ISSR-PCR data were very variable and did not reveal patterns corresponding to morphological variation or geographical distribution. Although the two morphs observed may represent the first stage of differentiation between two lineages, the recent origin of H. t. tithymali provided insufficient time for complete lineage sorting of ancestral polymorphism. Hence, the population of Hyles t. tithymali on the Canary Islands appears genetically more homogeneous than that was expected from the phenotypic distribution of the two morphotypes in the population. 相似文献
8.
CATHERINE J. COLLINS CERIDWEN I. FRASER ANNA ASHCROFT JONATHAN M. WATERS 《Molecular ecology》2010,19(20):4572-4580
Coastal populations are often connected by unidirectional current systems, but the biological effects of such asymmetric oceanographic connectivity remain relatively unstudied. We used mtDNA analysis to determine the phylogeographic origins of beach‐cast bull‐kelp (Durvillaea antarctica) adults in the Canterbury Bight, a 180 km coastal region devoid of rocky‐reef habitat in southern New Zealand. A multi‐year, quantitative analysis supports the oceanographically derived hypothesis of asymmetric dispersal mediated by the north‐flowing Southland Current. Specifically, 92% of beach‐cast specimens examined had originated south of the Bight, many drifting north for hundreds of kilometres, and some traversing at least 500 km of ocean from subantarctic sources. In contrast, only 8% of specimens had dispersed south against the prevailing current, and these counter‐current dispersers likely travelled relatively small distances (tens of kilometres). These data show that oceanographic connectivity models can provide robust estimates of passive biological dispersal, even for highly buoyant taxa. The results also indicate that there are no oceanographic barriers to kelp dispersal across the Canterbury Bight, indicating that other ecological factors explain the phylogeographic disjunction across this kelp‐free zone. The large number of long‐distance dispersal events detected suggests drifting macroalgae have potential to facilitate ongoing connectivity between otherwise isolated benthic populations. 相似文献
9.
Narongrit Muangmai Ceridwen I. Fraser Giuseppe C. Zuccarello 《Journal of phycology》2015,51(3):574-585
Spatial patterns of genetic diversity provide insight into the demography and history of species. Morphologically similar but genetically distinct “cryptic” species are increasingly being recognized in marine organisms through molecular analyses. Such species are, on closer inspection, often discovered to display contrasting life histories or occasionally minor morphological differences; molecular tools can thus be useful indicators of diversity. Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern Hemisphere and comprises many cryptic species. We used mitochondrial cytochrome c oxidase I gene sequences to assess the genetic variation, population genetic structure, and demographic history of B. intricata in New Zealand. Our results supported the existence of three cryptic species of B. intricata (N2, N4, and N5) in New Zealand. Cryptic species N4, which was found throughout New Zealand, showed a higher genetic diversity and wider distribution than the other two species, which were only found in the North Island and northern South Island. Our analyses showed low to moderate genetic differentiation among eastern North Island populations for cryptic species N2, but high differentiation among North and South Island populations for N4, suggesting different population structure between these cryptic species. Data also indicated that N2 has recently undergone population expansion, probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 populations suggests persistence in situ through the LGM. The contrasting population structures and inferred demographic histories of these species highlight that life history can vary greatly even among morphologically indistinguishable taxa. 相似文献
10.
Q. Wang S. Li R. Wang P. Paquin 《Journal of Zoological Systematics and Evolutionary Research》2008,46(2):96-104
Using mitochondrial DNA cytochrome c oxidase subunit I and nuclear DNA 28S rRNA data, we explored the phylogenetic relationships of the family Pimoidae (Arachnida: Araneae) and tested the North America to Asia dispersal hypothesis. Sequence data were analysed using maximum parsimony and Bayesian inference. A phylogenetic analysis suggested that vicariance, instead of dispersal, better explained the present distribution pattern of Pimoidae. Times of divergence events were estimated using penalized likelihood method. The dating analysis suggested that the emergence time of Pimoidae was approximately 140 million years ago (Ma). The divergence time of the North American and Asian species of Pimoa was approximately 110 Ma. Our phylogenetic hypothesis supports the current morphology‐based taxonomy and suggests that the cave dwelling might have played an important role in the speciation of pimoids in arid areas. 相似文献
11.
We performed a molecular phylogenetic analysis of the ground beetles Apatrobus (Carabidae), endemic to Japan, using the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear 28S rRNA (28S) genes. We focused on the species divergence in Kyushu, Shikoku and western Honshu and used 15 of 19 species and three populations with undetermined species in the DNA analysis. The gene trees showed that, of the Apatrobus species studied, A. hayachinensis Nakane from northern Honshu was not included in the monophyletic group of the other Apatrobus species and likely to be of a different genus. Divergence time estimation suggested that Apatrobus species excluding A. hayachinensis diverged 5.2 million years ago and the subsequent divergence of species occurred during the Pliocene and Pleistocene. In each of the main islands, Kyushu, Shikoku and Honshu, two or more distinct lineages occurred and all species had restricted distribution areas, suggesting that ancient dispersal and vicariance among the three main islands resulted in the nested biogeographical pattern of species distribution. 相似文献
12.
Masaya Kitamura Kazuya Mizugai Masahiro Taniguchi Hideo Akutsu Izumi Kumagai Tadao Nakaya 《Microbiology and immunology》1995,39(1):75-80
The gene encoding cytochrome c-553 from Desulfovibrio vulgaris (Miyazaki F) was cloned using a synthetic oligodeoxyribonucleotide probe. The nucleotide sequence indicated that cytochrome c-553 was synthesized as a precursor protein with an NH2-terminal signal sequence of 23 residues. In the cloned DNA fragment, there are three other open reading frames whose products have 191, 157, 541 amino acid residues, respectively. The putative ORF-4 product is highly homologous with the cytochrome c oxidase subunit I from various organisms. 相似文献
13.
Laetitia Plaisance Vincent Rousset Serge Morand D. Timothy J. Littlewood 《Journal of Biogeography》2008,35(1):76-87
Aim To investigate the phylogeographical patterns of two poorly dispersing but widely distributed monogenean species, Haliotrema aurigae and Euryhaliotrematoides grandis, gill parasites of coral reef fishes from the family Chaetodontidae. Location South Pacific Ocean (SPO). Methods Sequence data from the mitochondrial cytochrome oxidase subunit I (COI) gene were obtained from samples from five localities of the SPO (Heron Island, Lizard Island, Moorea, Palau and Wallis) for the two parasite species. Phylogenetic and genetic diversity analyses were used to reconstruct phylogeographical patterns, and dates of cladogenetic events were estimated. Results Overall, 50 individuals of 17 Haliotrema aurigae and 33 of Euryhaliotrematoides grandis were sequenced from five localities of the SPO for COI mtDNA (798 bp). Our results revealed a deep phylogeographical structure in the species Euryhaliotrematoides grandis. The molecular divergence between individuals from Moorea and individuals from the remaining localities (7.7%) may be related to Pleistocene sea‐level fluctuations. In contrast, Haliotrema aurigae shows no phylogeographical patterns with the presence of most of the mitochondrial haplotypes in every locality sampled. Main conclusions Our study shows contrasting phylogeographical patterns of the two monogenean parasite species studied, despite many shared characteristics. Both parasites are found on the same host family, share the same geographical range and ecology, and are phylogenetically close. We propose two hypotheses that may help explain the diparity: the hypotheses involve differences in the evolutionary age of the parasite species and their dispersal capabilities. Additionally, the lack of phylogeographical structure in Haliotrema aurigae contrasts with its apparently restricted dispersion, which is likely to occur during the egg stage of the life cycle, inducing a passive dispersal mechanism in butterflyfish monogeneans. 相似文献
14.
Recently, the number of collection records of Pemphigus galls from Populus nigra has been increasing in Japan. To identify the galls on P. nigra, mitochondrial COI sequences were analyzed from galling aphid samples collected on P. nigra in Tokyo and Hokkaido. From the BLAST search and neighbor‐joining (NJ) analysis, the aphid samples were identified as Pemphigus bursarius, which has not been recorded from Japan. Two samples from Tokyo and Hokkaido showed a genetic difference of 0.30%. This result suggests that different strains of P. bursarius might have been introduced into the Japanese islands at least twice. 相似文献
15.
Nuria Macías‐Hernández Leticia Bidegaray‐Batista Pedro Oromí Miquel A. Arnedo 《Journal of Zoological Systematics and Evolutionary Research》2013,51(1):29-37
Comparative phylogeography seeks for commonalities in the spatial demographic history of sympatric organisms to characterize the mechanisms that shaped such patterns. The unveiling of incongruent phylogeographic patterns in co‐occurring species, on the other hand, may hint to overlooked differences in their life histories or microhabitat preferences. The woodlouse‐hunter spiders of the genus Dysdera have undergone a major diversification on the Canary Islands. The species pair Dysdera alegranzaensis and Dysdera nesiotes are endemic to the island of Lanzarote and nearby islets, where they co‐occur at most of their known localities. The two species stand in sharp contrast to other sympatric endemic Dysdera in showing no evidence of somatic (non‐genitalic) differentiation. Phylogenetic and population genetic analyses of mitochondrial cox1 sequences from an exhaustive sample of D. alegranzaensis and D. nesiotes specimens, and additional mitochondrial (16S, L1, nad1) and nuclear genes (28S, H3) were analysed to reveal their phylogeographic patterns and clarify their phylogenetic relationships. Relaxed molecular clock models using five calibration points were further used to estimate divergence times between species and populations. Striking differences in phylogeography and population structure between the two species were observed. Dysdera nesiotes displayed a metapopulation‐like structure, while D. alegranzaensis was characterized by a weaker geographical structure but greater genetic divergences among its main haplotype lineages, suggesting more complex population dynamics. Our study confirms that co‐distributed sibling species may exhibit contrasting phylogeographic patterns in the absence of somatic differentiation. Further ecological studies, however, will be necessary to clarify whether the contrasting phylogeographies may hint at an overlooked niche partitioning between the two species. In addition, further comparisons with available phylogeographic data of other eastern Canarian Dysdera endemics confirm the key role of lava flows in structuring local populations in oceanic islands and identify localities that acted as refugia during volcanic eruptions. 相似文献
16.
Patterns of genetic differentiation in the plains zebra ( Equus quagga ) were analysed using mitochondrial DNA control region variation and seven microsatellites. The six morphologically defined subspecies of plains zebra lacked the population genetic structure indicative of distinct evolutionary units. Both marker sets showed high levels of genetic variation and very low levels of differentiation. There was no geographical structuring of mitochondrial DNA haplotypes in the phylogenetic tree, and the plains zebra showed the lowest overall differentiation recorded in any African ungulate studied so far. Arid-adapted African ungulates have shown significant regional genetic structuring in support of the Pleistocene refuge theory. This was not the case in the zebra, and the data are discussed in relation to the impact of Pleistocene climate change on a nonbovid member of the savannah ungulate community. The only other species showing a similar absence of genetic structuring is the African buffalo ( Syncerus caffer ), but this taxon lacks the high levels of morphological variation present in the plains zebra. 相似文献
17.
The barnacle, Chelonibia testudinaria, is a common inhabitant of the marine turtle epibiont community and plays a key role in the development of this community. Phylogeographic analysis of 79 cytochrome c oxidase I (COX1) sequences for barnacles collected from five populations found contrasting patterns of divergence for populations in the Atlantic vs. the Pacific Ocean. Our analysis indicates that the two Pacific populations, Senri Beach, Japan and Bahia Magdalena, Mexico, were not only highly divergent from the Atlantic populations but are highly divergent from one another. We suggest that barnacles from these populations may represent cryptic species. In contrast, sequence divergence was greatly reduced among barnacles collected from Wassaw Island, GA, USA, Keewaydin, FL, USA, and Kyparissia, Pèloponnésus Island, Greece. A reduction in sequence diversity at the latter site was attributed to a recent range expansion into the Mediterranean Sea. We examined historical patterns of migration among the three Atlantic and Mediterranean populations using the program migrate. This analysis indicates a high rate of migration from Keewaydin to Wassaw Island, contrasted with a much lower rate of migration in the opposite direction. The estimated migration rate from Kyparissia to Keewaydin was also non-negligible. We suggest that the association between C. testudinaria and loggerhead turtles and the patterns of turtle migration have played key roles in the expansion of the range of C. testudinaria into the Mediterranean Sea and the subsequent patterns of barnacle migration. We further propose that the difference between ocean basins, with respect to the impact of host migration on barnacle gene flow, probably stems from the fact that host-mediated dispersal in the Atlantic depends on advanced stage juveniles and adults while any host-mediated dispersal in the Pacific would have to involve early \"pelagic\" stage juvenile loggerheads. 相似文献
18.
Species of the marine meiofauna such as Gastrotricha are known to lack dispersal stages and are thus assumed to have low dispersal ability and low levels of gene flow between populations. Yet, most species are widely distributed, and this creates a paradox. To shed light on this apparent paradox, we test (i) whether such wide distribution may be due to misidentification and lumping of cryptic species with restricted distributions and (ii) whether spatial structures exist for the phylogeography of gastrotrichs. As a model, we used the genus Turbanella in NW Europe. DNA taxonomy using a mitochondrial and a nuclear marker supports distinctness of four traditional species (Turbanella ambronensis, T. bocqueti, T. mustela and T. cornuta) and provides evidence for two cryptic species within T. hyalina. An effect of geography on the within‐species genetic structure is indeed present, with the potential for understanding colonization processes and for performing phylogeographic inference from microscopic animals. On the other hand, the occurrence of widely distributed haplotypes indicates long‐distance dispersal as well, despite the assumed low dispersal ability of gastrotrichs. 相似文献
19.
Matthew P. Galaska Chester J. Sands Scott R. Santos Andrew R. Mahon Kenneth M. Halanych 《Ecology and evolution》2017,7(2):475-485
Marine systems have traditionally been thought of as “open” with few barriers to gene flow. In particular, many marine organisms in the Southern Ocean purportedly possess circumpolar distributions that have rarely been well verified. Here, we use the highly abundant and endemic Southern Ocean brittle star Ophionotus victoriae to examine genetic structure and determine whether barriers to gene flow have existed around the Antarctic continent. Ophionotus victoriae possesses feeding planktotrophic larvae with presumed high dispersal capability, but a previous study revealed genetic structure along the Antarctic Peninsula. To test the extent of genetic differentiation within O. victoriae, we sampled from the Ross Sea through the eastern Weddell Sea. Whereas two mitochondrial DNA markers (16S rDNA and COI) were employed to allow comparison to earlier work, a 2b‐RAD single‐nucleotide polymorphism (SNP) approach allowed sampling of loci across the genome. Mitochondrial data from 414 individuals suggested three major lineages, but 2b‐RAD data generated 1,999 biallelic loci that identified four geographically distinct groups from 89 samples. Given the greater resolution by SNP data, O. victoriae can be divided into geographically distinct populations likely representing multiple species. Specific historical scenarios that explain current population structure were examined with approximate Bayesian computation (ABC) analyses. Although the Bransfield Strait region shows high diversity possibly due to mixing, our results suggest that within the recent past, dispersal processes due to strong currents such as the Antarctic Circumpolar Current have not overcome genetic subdivision presumably due to historical isolation, questioning the idea of large open circumpolar populations in the Southern Ocean. 相似文献
20.
TEIJI SOTA HONGBIN LIANG YOSHIHIRO ENOKIDO MICHIO HORI 《Biological journal of the Linnean Society. Linnean Society of London》2011,102(4):715-727
To examine the diverse colonization histories in eight tiger beetle species of the genus Cylindera (Coleoptera: Cicindelidae) on the East Asian islands, we conducted phylogenetic analyses and divergence time estimation using mitochondrial cytochome oxidase subunit I (COI) and nuclear 28S rDNA sequences. The island fauna consisted of four subgenera: Apterodela, Cicindina, Ifasina, and Cylindera. Apterodela is a flightless group with large bodies, whereas the others are fliers with small bodies. In Apterodela, the divergence among endemic species in Taiwan, Japan, and the mainland was ancient (2.1–4.7 Mya), as expected from their flightlessness. Their dispersal might have occurred across the extended landmass in East Asia during the Pliocene. In the subgenus Cicindina, Cylindera elisae has spread throughout East Asia, from which an endemic species, Cylindera bonina, was derived on the oceanic Bonin Islands during the early Pleistocene (0.9 Mya). This indicates the significance of Cylindera bonina, which is currently confined to a single island, for conservation. In the subgenus Ifasina, Cylindera kaleea is widely distributed in East Asia, and its sister species Cylindera humerula, endemic to Okinawa Island, diverged 1.0 Mya, whereas Cylindera psilica on Taiwan and the Yaeyama Islands diverged approximately 0.8 Mya. In the subgenus Cylindera, the colonization of Cylindera gracilis in Japan from the mainland occurred during the last glacial period. With the exception of C. bonina, which likely colonized new territories by flight or drifting, other dispersal events might have used land connections that occurred repeatedly during the Pliocene and Pleistocene. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 715–727. 相似文献