首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background aimsAssessing mesenchymal stromal cells (MSCs) after grafting is essential for understanding their migration and differentiation processes. The present study sought to evaluate via cellular magnetic resonance imaging (MRI) if transplantation route may have an effect on MSCs engrafting to fibrotic liver of rats.MethodsRat MSCs were prepared, labeled with superparamagnetic iron oxide and scanned with MRI. Labeled MSCs were transplanted via the portal vein or vena caudalis to rats with hepatic fibrosis. MRI was performed in vitro before and after transplantation. Histologic examination was performed. MRI scan and imaging parameter optimization in vitro and migration under in vivo conditions were demonstrated.ResultsStrong MRI susceptibility effects could be found on gradient echo-weighted, or T21-weighted, imaging sequences from 24 h after labeling to passage 4 of labeled MSCs in vitro. In vivo, MRI findings of the portal vein group indicated lower signal in liver on single shot fast spin echo-weighted, or T2-weighted, imaging and T21-weighted imaging sequences. The low liver MRI signal increased gradually from 0–3 h and decreased gradually from 3 h to 14 days post-transplantation. The distribution pattern of labeled MSCs in liver histologic sections was identical to that of MRI signal. It was difficult to find MSCs in tissues near the portal area on day 14 after transplantation; labeled MSCs appeared in fibrous tuberculum at the edge of the liver. No MRI signal change and a positive histologic examination were observed in the vena caudalis group.ConclusionsThe portal vein route seemed to be more beneficial than the vena caudalis on MSC migration to fibrotic liver of rats via MRI.  相似文献   

2.
Summary Rat lymphokine-activated killer (LAK) cells, generated by adhering rat splenocytes isolated from the 52% Percoll density fraction to plastic flasks, demonstrate restricted in vivo tissue distribution, localizing in the lungs and liver after 2 h, but redistributing into the liver and spleen 24 h after i.v. administration. However, a different pattern of distribution was observed when this population of LAK cells was labeled with one of four commonly used radioisotopes. For example, LAK cells showed a high distribution into the lungs 30 min after administration when labeled with51Cr,125I-dUrd or111In-oxine, whereas111InCl-labeled LAK cells showed an equal distribution into the blood, lungs and liver at this time. Two hours after administration, cells labeled with111In-oxine showed an equivalent distribution into the lungs and liver, those labeled with125I-dUrd or51Cr showed a high accumulation in the lungs, whereas those labeled with111In-Cl entered more into the liver and blood. The pattern of distribution of111In-Cl- or111In-oxine-labeled cells was confirmed using gamma camera imaging analysis. By 24 h, LAK cells labeled with111InCl,111In-oxine or51Cr distributed in the liver and spleen in variable concentrations. In contrast, cells labeled with125I-dUrd were not detected in any organ tested.This study was paralleled by monitoring the distribution of LAK cells labeled with Hoechst 33342 (H33342) and analyzed for the presence of fluoresceinated cells in different organs either by flow cytometry analysis, or in frozen section. The data indicate that the distribution pattern of LAK cells labeled with111In-oxine is the closest to the distribution of H33342-labeled cells. Of all the radioisotopes used,125I-dUrd has the most disadvantages and is not recommended for monitoring the in vivo distribution of leukocytes.  相似文献   

3.
Human amniotic epithelial cells (hAECs) are a recently identified type of stem cell. Thanks to their ready availability and the lower risk of teratoma formation, hAECs have been studied and tested for a variety of human disease treatments and tissue reconstruction efforts. This aim of this study was to establish a stable tracking system to further monitor hAECs in vivo after transplantation. hAECs were isolated from the placentas of patients who visited the Hunan Province Maternity and Child Care Hospitals between Jan 2008 and Jan 2009. Using the classic transfection/infection technique, we successfully introduced green fluorescent protein (GFP) into cultured hAECs with an adeno-associated virus (AAV) vector. The initial preparation of the AAV-GFP virus stock was titrated using HT1081 cells, and further used for the infection of hAECs. GFP+ hAECs preserve the capacity of differentiation into hepatocytelike cells with the expression of cytokeratin-18 (CK18) and albumin (ALB). AAV-GFP virus-infected hAECs were transplanted through the spleen into severe combined immune deficiency (SCID) mice via hepatectomy. Four weeks later, the GFP and human albumin expressions were examined in multiple organs through immunoflourence staining. In culture, over 50% of the hAECs were GFP-positive 3 days after infection. Following transplantation, AAV-GFPinfected hAECs survived and continued to express GFP in the host for up to 4 weeks. These cells were primarily found in the spleen and liver, expressing human albumin. This study provides a feasible and stable system to track hAECs. It may prove useful to further identify their biological characteristics after transplantation and to elucidate their beneficial roles for therapeutic purposes.  相似文献   

4.
Organ distribution and blood concentration profiles were compared following injection of mice with radiolabeled test agents via the lateral tail vein or retroorbital venous sinus. Monoclonal antibodies directed against B16 melanoma of C57BL/6 origin were labeled with iodine-125. Thymocytes from BALB/c mice and B16 melanoma cells were labeled with technetium-99m sodium pertechnetate (Na 99mTcO4). Animals were injected with 5 microCI of iodinated antibody, 5 X 10(5) syngeneic thymocytes, 2.5 X 10(5) melanoma cells, or 10 microCi Na 99mTcO4 in 0.2 ml saline via either route. In non-tumor-bearing C57BL/6 mice radiolabeled monoclonal antibody was found primarily in the gastrointestinal tract, liver, and blood. Na 99mTcO4 localized in the gastrointestinal tract, 99mTc-labeled thymocytes in the spleen and liver, and 99mTc-labeled B16 melanoma cells in the liver and lungs. Pharmacokinetic analysis of blood samples taken 4, 8, and 12 min following injection of the labeled agents suggested that the iodinated antibody had less vascular permeability than Na 99mTcO4 and that thymocytes and B16 melanoma cells were trapped in the pulmonary vasculature as they passed through the lungs. It is noteworthy that no biologically significant differences in organ distribution patterns or blood decay profiles were found between lateral tail vein and retroorbital routes. The data clearly indicate that these routes can be used interchangeably with one another for intravenous injections.  相似文献   

5.
We analyzed the effects of acute and chronic oral administration of monosodium l-glutamate (MSG) on serum iron (Fe) levels and total iron-binding capacity (TIBC) in piglets. In the first experiment, 12 piglets were randomly assigned to two groups: one fed a standard diet (SD) and the other fed an SD containing MSG (10 g/kg). On day 30, serum, liver, kidney, and spleen samples were collected to determine the Fe levels. In the second experiment, six pigs were surgically fitted with a catheter in the jugular artery and vein to investigate the dynamic changes of serum Fe and TIBC. Blood samples were taken from each pig via the catheter every 30 min, for a period of 4 h. The results show that MSG increases Fe levels in the spleen (P?<?0.05) and in serum obtained from the jugular artery (P?<?0.01). In addition, TIBC in serum obtained from the jugular artery demonstrated an increasing trend in pigs fed the MSG diet; however, this trend was not observed in the jugular vein. In conclusion, MSG increases Fe retention by enhancing TIBC in serum.  相似文献   

6.
Oxidative stress promotes endothelial cell senescence and endothelial dysfunction, important early steps in atherogenesis. To investigate potential antioxidant effects of IGF-1 we treated human aortic endothelial cells (hAECs) with 0–100 ng/mL IGF-1 prior to exposure to native or oxidized low-density lipoprotein (oxLDL). IGF-1 dose- and time- dependently reduced basal- and oxLDL-induced ROS generation. IGF-1 did not alter superoxide dismutase or catalase activity but markedly increased activity of glutathione peroxidase (GPX), a crucial antioxidant enzyme, via a phosphoinositide-3 kinase dependent pathway. IGF-1 did not increase GPX1 mRNA levels but increased GPX1 protein levels by 2.6-fold at 24 h, and altered selenocysteine-incorporation complex formation on GPX1 mRNA. Furthermore, IGF-1 blocked hydrogen peroxide induced premature cell senescence in hAECs. In conclusion, IGF-1 upregulates GPX1 expression in hAECs via a translational mechanism, which may play an important role in the ability of IGF-1 to reduce endothelial cell oxidative stress and premature senescence. Our findings have major implications for understanding vasculoprotective effects of IGF-1.  相似文献   

7.
Kinetics, biodistribution, and histological studies were performed to evaluate the particle‐size effects on the distribution of 15 nm and 50 nm PEG‐coated colloidal gold (CG) particles and 160 nm silica/gold nanoshells (NSs) in rats and rabbits. The above nanoparticles (NPs) were used as a model because of their importance for current biomedical applications such as photothermal therapy, optical coherence tomography, and resonance‐scattering imaging. The dynamics of NPs circulation in vivo was evaluated after intravenous administration of 15 nm CG NPs to rabbit, and the maximal concentrations of gold were observed 15–30 min after injection. Rats were injected in the tail vein with PEG‐coated NPs (about 0.3 mg Au/kg rats). 24 h after injection, the accumulation of gold in different organs and blood was determined by atomic absorption spectroscopy. In accordance with the published reports, we observed 15 nm particles in all organs with rather smooth distribution over liver, spleen and blood. By contrast, the larger NSs were accumulated mainly in the liver and spleen. For rabbits, the biodistribution was similar (72 h after intravenous injection). We report also preliminary data on the light microscopy and TEM histological examination that allows evaluation of the changes in biotissues after gold NPs treatment. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Translocation of viable cells from a Bacillus thuringiensis israelensis-based biopesticide to inner organs in a mouse model was studied. Mice were exposed to the originally formulated product through the lungs and gastrointestinal tract by intratracheal instillation. Colony forming units (CFU) were grown from lungs, caecum, spleen and liver on Bacillus cereus-specific agar (BCSA) after 24 h and finally determined to be biopesticide strain B. t. israelensis by large plasmid profile. No CFU were found in spleen or liver of the control mice or in any aerosol background or material. We have shown that viable cells from the commercial product can translocate to spleen and liver of immunocompetent mice in a dose-dependent manner. Furthermore, we discuss the methods of exposure and how bacterial translocation should be taken into consideration when evaluating the safety of novel or reintroduced biopesticides in the future.  相似文献   

9.
The present study investigated the role of kisspeptin-10 on reproductively significant trace elements in relation to testosterone release in male rabbits, Oryctolagus cuniculus. Groups of rabbits were exposed to single 1 μg kisspeptin dose (i.v., saphenous vein), while simultaneous groups were pretreated with a kisspeptin antagonist, peptide-234 (50 μg) 20 min before administering kisspeptin. Sequential blood sampling was done through marginal ear vein puncture at staggered time intervals: 0, 0.5, 1, 2, 4, and 24 h to determine serum testosterone. Testes and whole blood were collected at 4 and 24 h post dosage to determine trace element concentrations through atomic absorption spectrophotometry. In testes, zinc (Zn), manganese (Mn), and Fe concentrations showed significant increases at 24 h, while copper (Cu) concentration was found elevated at 4 and 24 h both (P?<?0.001). In whole blood, Zn and Cu concentrations were significantly elevated at 4 and 24 h, while Mn and cobalt (Co) concentrations showed increases only at 24 h (P?<?0.001). Blood iron concentration was not altered in the blood. In contrast, no change occurred in testicular Co, and chromium or nickel concentrations in either testes or blood. Compared to control and predose groups, serum testosterone levels increased gradually and peaked at 2 h (P?<?0.001) post kisspeptin treatment but declined thereafter. Pretreatment with antagonist abolished all increases in trace elements and testosterone concentrations. The present study provides first evidence that reproduction- and fertility-related peptide “kisspeptin” modulates testicular and blood trace elements and that this action is likely GPR54-dependent.  相似文献   

10.
Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.  相似文献   

11.

Background

Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs.

Methods

C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs.

Results

Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix.

Conclusions

These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.
  相似文献   

12.
Bacterial magnetic particles (BMPs) are of interest as potential carriers of bioactive macromolecules, drugs, or liposomes. In this study, a high-pressure homogenizer was used to disrupt Magnetospirillum gryphiswaldense strain MSR-1 cells, and BMPs were purified. BMPs were labeled with fluorescence reagent 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocianin perchlorate (DiI) and injected into the tail vein of BALB/c nude mice. Distribution of fluorescence signals of DiI–BMPs in vivo was examined using a whole-body fluorescence imaging system. The result showed that fluorescence signals were detected in liver, stomach, intestine, lungs, and spleen. However, transmission electron microscopy of ultrathin sections indicated that BMPs were mainly present in liver and lungs, but not in the other organs. BMPs could be useful as carriers for targeted drug therapy of diseases of the liver or lung.  相似文献   

13.
Effects of two intensities (1 and 5 W?m?2) of UV-B radiation on the synthesis of UV-absorbing compounds in a terrestrial cyanobacterium Nostoc flagelliforme were investigated. UV-B radiation resulted in lower biomass. Short period (less than 12 h) of UV-B radiation caused an increase of chlorophyll a content, but subsequent duration of treatment (more than 24 h) resulted in a rapid decrease. N. flagelliforme synthesized UV-absorbing compounds such as scytonemin and mycosporine-like amino acids (MAAs) in response to UV-B radiation. Upon 48 h of exposure to UV-B radiation, scytonemin content in cells increased by 103.8 and 164.0 % at 1 and 5 W?m?2, respectively. Oligosaccharide-linked mycosporine-like amino acids increased by 145.5 % after 12 h at 5 W?m?2 and 114.5 % after 48 h at 1 W?m?2 UV-B radiation. HPLC analysis showed that nine MAAs existed in N. flagelliforme cells both from liquid suspension culture and field colony. But the concentration and kinds of them were different. At the two distinct levels of UV-B radiation, the content of particular MAAs increased, declined, or remained unchanged. Moreover, the appearance of two new MAAs was observed.  相似文献   

14.
Intrauterine infection is a major cause of immune imbalance at the maternal-fetal interface, which leads to spontaneous abortion, premature rupture of the fetal membranes, and preterm birth. Human amniotic epithelial cells (hAECs) play a fundamental role in the maintenance of pregnancy. We hypothesize that bacteria influence the immunomodulatory effects of hAECs through stimulation of Toll-like receptors (TLRs). Here, we investigated how lipopolysaccharide (LPS) as a bacterial component affects anti-inflammatory and pro-inflammatory cytokines production of hAECs. Human placentas were obtained from six healthy pregnant women and hAECs were isolated. The phenotypic characteristics of hAECs were determined by flow cytometry. The hAECs (4?×?105 cells/ml) were cultured in the presence or absence of LPS (5?μg/ml). The viability of the cells was assessed and culture supernatants of hAECs were collected after 24, 48 and 72?h of incubation. The levels of transforming growth factor-beta1 (TGF-β1), interleukin-4 (IL-4), tumor necrosis factor-alpha (TNF-α), interleukin-17?A (IL-17A), and interferon-gamma (IFN-γ) were measured by ELISA. Our data showed that LPS treatment did not affect the viability of hAECs, while had a stimulatory effect on TGF-β1 production of hAECs (p?<?0.001). A significant reduction in IL-4 production of LPS-stimulated hAECs was observed (p?<?0.05). LPS enhanced the production of TNF-α and IL-17?A of hAECs (p?<?0.05–0.0001). The IFN-γ level was only detectable in two culture supernatants of hAECs, and the level was unchanged after stimulation with LPS. Based on these findings, LPS may play a pivotal role in immune imbalance at the feto-maternal interface through affecting anti-inflammatory and pro-inflammatory cytokines production of hAECs.  相似文献   

15.
In the present study, we evaluated whether stem cell-to-tenocyte differentiation could be evaluated via measurement of the mechanical properties of the cell. We used mechanical uniaxial cyclic stretching to induce the differentiation of human bone marrow mesenchymal stem cells into tenocytes. The cells were subjected to cyclic elongation of 10 or 15 % at a cyclic frequency of 1 Hz for 24 or 48 h, and differentiation was assessed by real-time PCR (rtPCR) determination of messenger RNA expression levels for four commonly used markers of stem cell-to-tenocyte differentiation: type I collagen, type III collagen, tenascin-C, and scleraxis. The rtPCR results showed that cells subjected to 10 % cyclic elongation for 24 or 48 h differentiated into tenocytes. Atomic force microscopy (AFM) was then used to measure the force curves around the cell nuclei, and the AFM data were used to calculate the elastic moduli of the cell surfaces. The elastic modulus values of the control (non-stretched) cells differed significantly from those of cells stretched at 10 % for 24 or 48 h (P < 0.01). Confocal fluorescence microscopic observations of actin stress fibers suggested that the change in elastic modulus was ascribable to the development of the cellular cytoskeleton during the differentiation process. Therefore, we conclude that the atomic force microscopic measurement of the elastic modulus of the cell surface can be used to evaluate stem cell-to-tenocyte differentiation.  相似文献   

16.
This study was conducted to determine the effects of graded doses of l-glutamine supplementation on the replication and distribution of Pasteurella multocida, and the expression of its major virulence factors in mouse model. Mice were randomly assigned to the basal diet supplemented with 0, 0.5, 1.0 or 2.0 % glutamine. Pasteurella multocida burden was detected in the heart, liver, spleen, lung and kidney after 12 h of P. multocida infection. The expression of major virulence factors, toll-like receptors (TLRs), proinflammatory cytokines (interleukin-1 beta, interleukin-6, and tumor necrosis factor alpha) and anti-oxidative factors (GPX1 and CuZnSOD) was analyzed in the lung and spleen. Dietary 0.5 % glutamine supplementation has little significant effect on these parameters, compared to those with basal diet. However, results showed that a high dose of glutamine supplementation increased the P. multocida burden (P < 0.001) and the expression of its major virulence factors (P < 0.05) as compared to those with a lower dose of supplementation. In the lung, high dose of glutamine supplementation inhibited the proinflammatory responses (P < 0.05) and TLRs signaling (P < 0.05). In the spleen, the effect of glutamine supplementation on different components in TLR signaling depends on glutamine concentration, and high dose of glutamine supplementation activated the proinflammatory response. In conclusion, glutamine supplementation increased P. multocida burden and the expression of its major virulence factors, while affecting the functions of the lung and spleen.  相似文献   

17.

Background aims

The chronic inflammation of autoimmune diseases develops repetitive localized destruction or systemic disorders, represented by Hashimoto's thyroiditis (HT) and Systemic lupus erythematosus (SLE) respectively. Currently, there are no efficient ways to treat these autoimmune diseases. Therefore, it is critically important to explore new therapeutic strategies. The aim of this study was to investigate the therapeutic efficacy of human amniotic epithelial cells (hAECs) in murine models of HT and SLE.

Methods

Experimental autoimmune thyroiditis (EAT) was induced in female CBA/J mice by immunization with porcine thyroglobulin (pTg). hAECs were intravenously administered at different time points during the disease course. MRL-Faslpr mice, a strain with spontaneously occurring SLE, were intravenously administered hAECs when their sera were positive for both anti-nuclear antibodies (ANAs) and anti-double-stranded DNA (anti-dsDNA) antibodies. Two weeks after the last cell transplantation, blood and tissue samples were collected for histological examination and immune system analysis.

Results

hAECs prevented lymphocytes infiltration into the thyroid and improved the damage of thyroid follicular in EAT mice. Correspondingly, hAECs administration reduced anti-thyroglobulin antibodies (TGAb), anti-thyroid peroxidase antibodies (TPOAb) and thyroid stimulating hormone (TSH) levels. SLE mice injected with hAECs appeared negative for ANAs and anti-dsDNA antibodies and showed reduced immunoglobulin profiles. Mechanically, hAECs modulated the immune cells balance in EAT and SLE mice, by downregulating the ratios of Th17/Treg cells in both EAT and SLE mice and upregulating the proportion of B10 cells in EAT mice. This was confirmed by in vitro assay, in which hAECs inhibited the activation of EAT mice-derived splenocytes. Moreover, hAECs improved the cytokine environment in both EAT and SLE mice, by suppressing the levels of IL-17A and IFN-γ and enhancing TGF-β.

Conclusion

These results demonstrated the immunoregulatory effect of hAECs for inflammation inhibition and injury recovery in HT and SLE murine models. The current study may provide a novel therapeutic strategy for these autoimmune diseases in clinic.  相似文献   

18.
Intestinal stem cells (ISCs) are responsible for renewal of the epithelium both during normal homeostasis and following injury. As such, they have significant therapeutic potential. However, whether ISCs can survive tissue storage is unknown. We hypothesize that, although the majority of epithelial cells might die, ISCs would remain viable for at least 24 h at 4 °C. To explore this hypothesis, jejuna of C57Bl6/J or Lgr5-LacZ mice were removed and either processed immediately or placed in phosphate-buffered saline at 4 °C. Delayed isolation of epithelium was performed after 24, 30, or 48 h storage. At the light microscope level, despite extensive apoptosis of villus epithelial cells, small intestinal crypts remained morphologically intact for 30 h and ISCs were identifiable via Lgr5-LacZ positivity. Electron microscopy showed that ISCs retained high integrity for 24 h. When assessed by flow cytometry, ISCs were more resistant to degeneration than the rest of the epithelium, including neighboring Paneth cells, with higher viability across all time points. Cultured isolated crypts showed no loss of capacity to form complex enteroids after 24 h tissue storage, with efficiencies after 7 days of culture remaining above 80 %. By 30 h storage, efficiencies declined but budding capability was retained. We conclude that, with delay in isolation, ISCs remain viable and retain their proliferative capacity. In contrast, the remainder of the epithelium, including the Paneth cells, exhibits degeneration and programmed cell death. If these findings are recapitulated in human tissue, storage at 4 °C might offer a valuable temporal window for the harvesting of crypts or ISCs for therapeutic application.  相似文献   

19.
With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin–melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2–128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3–24 and 0.5–16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8–16 and 4–16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80–90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 μM (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %.  相似文献   

20.
Little is known about the differences in the CD4+ T-cell response induced by Sporothrix schenckii and Sporothrix brasiliensis, the most virulent species that cause sporotrichosis. Here, the helper (Th) and regulatory T cells (Tregs) responses were evaluated comparatively in a murine model of sporotrichosis on days 7, 21 and 35 after subcutaneous infection with either S. schenckii or S. brasiliensis conidia. The fungal load was measured at the site of infection, as well as in the liver and spleen. The Th1/Th17/Tregs responses were analyzed in the spleen, while the level of IL-2, IL-4, IL-6, TNF-alpha, IFN-?, IL-17A and IL-10 cytokines were measured at the local site of infection on 24 h postinfections and in sera on the indicated days. S. brasiliensis caused a longer-lasting infection in the skin and chronic systemic dissemination associated to more severe granulomatous lesions. Similar Th1/Th1-Th17/Tregs responses were induced by both S. brasiliensis and S. schenckii on 7th and 21st d.p.i but on 35 d.p.i a reduction of Th1 and Th1-Th17 cells, associated to higher values of Th17/Tregs cells was observed only in S. brasiliensis-infected mice. In summary, S. brasiliensis caused a more severe disease associated with sustained Th17/Tregs responses than S. schenckii in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号