首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

2.
Because nearly all structure/function studies on Na(+)/K(+)-ATPase have been done on enzymes prepared in the presence of SDS, we have studied previously unrecognized consequences of SDS interaction with the enzyme. When the purified membrane-bound kidney enzyme was solubilized with SDS or TDS concentrations just sufficient to cause complete solubilization, but not at concentrations severalfold higher, the enzyme retained quaternary structure, exhibiting alpha,alpha-, alpha,beta-, beta,beta-, and alpha,gamma-associations as detected by chemical cross-linking. The presence of solubilized oligomers was confirmed by sucrose density gradient centrifugation. This solubilized enzyme had no ATPase activity and was not phosphorylated by ATP, but it retained the ability to occlude Rb(+) and Na(+). This, and comparison of cross-linking patterns obtained with different reagents, suggested that the transmembrane domains of the enzyme are more resistant to SDS-induced unfolding than its other domains. These findings (a). indicate that the partially unfolded oligomer(s) retaining partial function is the intermediate in the SDS-induced denaturation of the native membrane enzyme having the minimum oligomeric structure of (alpha,beta,gamma)(2) and (b). suggest potential functions for Na(+)/K(+)-ATPase with intrinsically unfolded domains. Mixtures of solubilized/partially unfolded enzyme and membrane-bound enzyme exhibited cross-linking patterns and Na(+) occlusion capacities different from those of either enzyme species, suggesting that the two interact. Formation of the partially unfolded enzyme during standard purification procedure for the preparation of the membrane-bound enzyme was shown, indicating that it is necessary to ensure the separation of the partially unfolded enzyme from the membrane-bound enzyme to avoid the distortion of the properties of the latter.  相似文献   

3.
The luteinizing hormone/human choriogonadotropin (hCG) receptor from superovulated rat ovary was purified to homogeneity. A novel scheme based on reverse immunoaffinity chromatography using immobilized antibodies to membrane proteins from receptor down-regulated ovary and subsequent two-step affinity purification on hCG-Sepharose was used to isolate homogeneous receptor. The purification method was also compared to an alternate scheme involving lectin affinity chromatography followed by hCG affinity chromatography. The purified receptor obtained by the latter method was heterogeneous and highly aggregated. The hormone binding properties, molecular size, and subunit composition of the purified receptor obtained by either method were identical. The stability of the receptor during and following solubilization was markedly improved by using 20% glycerol. The pure receptor consists of four nonidentical subunits of molecular weight 79,300 (alpha), 66,400 (beta), 55,300 (gamma), and 46,700 (delta) as indicated by polyacrylamide gel electrophoresis under reducing conditions. All receptor subunits generally, but occasionally excepting the alpha-subunit, were specifically labeled with iodinated hCG in membrane and soluble receptor preparations using bifunctional cross-linking agents. Analysis of the cross-linked hormone-receptor complexes under nonreducing conditions showed the molecular mass of the undissociated receptor to be 268,000 daltons. Hormone binding studies demonstrated that the isolated receptor retained all of the specific binding characteristics expected for the luteinizing hormone/hCG receptor. In combination, these results indicate that the functional and structural properties of the receptor were not altered during purification.  相似文献   

4.
Two proteins serving as substrates for ADP-ribosylation catalyzed by islet-activating protein (IAP), pertussis toxin, and binding guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) with high affinities were purified from the cholate extract of rat brain membranes. The purified proteins had the same heterotrimeric structure (alpha beta gamma) as the IAP substrates previously purified from rabbit liver and bovine brain and differed from each other in alpha only; the molecular weight of alpha was 41,000 (alpha 41 beta gamma) and 39,000 (alpha 39 beta gamma). Both were further resolved into alpha (alpha 41 or alpha 39) and beta gamma which were also purified to homogeneity to compare the activities of alpha-monomers with the original trimers. The maintenance of the rigid trimeric structure by combining alpha 41 or alpha 39 with beta gamma in the absence of Mg2+ was essential for the alpha-subunit to be ADP-ribosylated by IAP. The alpha-subunit was very stable but displayed the only partial GTP gamma S-binding activity under these conditions. Isolated alpha-monomers exhibited high GTPase activities when assayed in the presence of submicromolar Mg2+ but were very unstable at 30 degrees C and not ADP-ribosylated by IAP. The most favorable conditions for the GTP gamma S binding to alpha-subunits were achieved by combining alpha 41 or alpha 39 with beta gamma in the presence of millimolar Mg2+, probably due to the increase in stability and unmasking of the GTP-binding sites. There was no qualitative difference in these properties between alpha 41 beta gamma (alpha 41) and alpha 39 beta gamma (alpha 39). But alpha 39 beta gamma (or alpha 39) was usually more active than alpha 41 beta gamma (or alpha 41), at least partly due to its higher affinity for Mg2+ and lower affinity for beta gamma. Relation of these differences in activity between alpha 41 beta gamma and alpha 39 beta gamma to their physiological roles in signal transduction is discussed.  相似文献   

5.
Molecular structure of the beta-adrenergic receptor   总被引:1,自引:0,他引:1  
The beta-adrenergic receptor from several tissues has been purified to homogeneity or photoaffinity radiolabeled and its subunit molecular weight determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. In this study we have examined the oligomeric structure of nondenatured beta 1- and beta 2-adrenergic receptor proteins, as solubilized with the detergent digitonin. Model systems used were frog and turkey red blood cell as well as rat, rabbit, and bovine lung plasma membrane preparations. To correct for the effects of detergent binding, sedimentation equilibrium analysis in various solvents, as adapted for the air-driven ultracentrifuge, was used. With this approach an estimate of 6 g of digitonin/g of protein binding was determined, corresponding to a ratio of 180 mol of digitonin/mol of protein. Protein molecular weights estimated by this method were 43 500 for the turkey red blood cell beta 1 receptor and 54 000 for the frog red blood cell beta 2 receptor. Molecular weights of 60 000-65 000 were estimated for beta 1 and beta 2 receptors present in mammalian lungs. These values agree with estimates of subunit molecular weight obtained by SDS gel electrophoresis of purified or photoradiolabeled preparations and suggest beta-adrenergic receptors to be digitonin solubilized from the membrane as single polypeptide chains.  相似文献   

6.
An analysis of 6-phosphofructokinase from brewers' yeast in the presence of sodium dodecylsulfate reveals the occurrence of four components with the following molecular weights: alpha = 140000, beta = 130000, and alpha' = 92000, beta' = 87000. It was found that the alpha- and beta-components can be converted to the alpha' and beta' components by treatment of the native preparation with hyaluronidase. A comparison of the molecular weight obtained by ultracentrifugation and gel filtration with the results obtained by dodecylsulfate electrophoresis after treatment with hyaluronidase reveals that the alpha' and beta' components are the smallest molecular structures obtained upon dissociation of the native enzyme. The mechanism of action of hyaluronidase suggests a desensitization of the alpha and beta components of the enzyme towards dodecylsulfate. Thus, in the absence of hyaluronidase treatment; only an apparent molecular weight for the alpha and beta component is obtained. The analysis indicates that the native enzyme might be composed of four different subunits with an alpha, beta, alpha' and beta' configuration. It is not excluded that the native enzyme consists only of alpha- and beta-chains.  相似文献   

7.
Purification of the human placental alpha 2-macroglobulin receptor   总被引:7,自引:0,他引:7  
The alpha 2-macroglobulin receptor was solubilized from human placental membranes, purified and characterized. Affinity cross-linking of labelled ligand to intact membranes showed a receptor size compatible with 400-500 kDa. The membranes were solubilized in 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonate (CHAPS) and affinity chromatography was performed using Sepharose-immobilized alpha 2-macroglobulin-methylamine with elution in buffer containing 2 mM EDTA, pH 6.0. SDS-PAGE of the resulting receptor preparation showed a predominant approx. 440 kDa band (reducing conditions) and some minor accompanying proteins of 70-90 kDa and 40 kDa. The yield was 400-800 micrograms receptor preparation per placenta. The receptor preparation immobilized on nitrocellulose bound the alpha 2-macroglobulin-trypsin complex with a dissociation constant of about 400 pM. 125I-iodinated receptor preparation bound almost quantitatively to Sepharose-immobilized alpha 2-macroglobulin-methylamine in the presence of CHAPS alone, and bound 70-80% in the presence of 0.2% SDS. The labelled proteins were separated in the presence of 0.2% SDS by gel filtration or SDS-PAGE (unboiled samples). The 440 kDa protein accounted for the major part of the binding, although some approx. 80 kDa proteins, perhaps proteolytic degradation products, also showed binding activity.  相似文献   

8.
The extracellular domain of the 55-kDa TNF receptor (rsTNFR beta) has been expressed as a secreted protein in baculovirus-infected insect cells and Chinese hamster ovary (CHO)/dhfr- cells. A chimeric fusion protein (rsTNFR beta-h gamma 3) constructed by inserting the extracellular part of the receptor in front of the hinge region of the human IgG C gamma 3 chain has been expressed in mouse myeloma cells. The recombinant receptor proteins were purified from transfected cell culture supernatants by TNF alpha- or protein G affinity chromatography and gel filtration. In a solid phase binding assay rsTNFR beta was found to bind TNF alpha with high affinity comparable with the membrane-bound full-length receptor. The affinity for TNF beta was slightly impaired. However, the bivalent rsTNFR beta-h gamma 3 fusion protein bound both ligands with a significantly higher affinity than monovalent rsTNFR beta reflecting most likely an increased avidity of the bivalent construct. A molecular mass of about 140 kDa for both rsTNFR beta.TNF alpha and rsTNFR beta.TNF beta complexes was determined in analytical ultracentrifugation studies strongly suggesting a stoichiometry of three rsTNFR beta molecules bound to one TNF alpha or TNF beta trimer. Sedimentation velocity and quasielastic light scattering measurements indicated an extended structure for rsTNFR beta and its TNF alpha and TNF beta complexes. Multiple receptor binding sites on TNF alpha trimers could also be demonstrated by a TNF alpha-induced agglutination of Latex beads coated with the rsTNFR beta-h gamma 3 fusion protein. Both rsTNFR beta and rsTNFR beta-h gamma 3 were found to inhibit binding of TNF alpha and TNF beta to native 55- and 75-kDa TNF receptors and to prevent TNF alpha and TNF beta bioactivity in a cellular cytotoxicity assay. Concentrations of rsTNFR beta-h gamma 3 equimolar to TNF alpha were sufficient to neutralize TNF activity almost completely, whereas a 10-100-fold excess of rsTNFR beta was needed for similar inhibitory effects. In view of their potent TNF antagonizing activity, recombinant soluble TNF receptor fragments might be useful as therapeutic agents in TNF-mediated disorders.  相似文献   

9.
S-Adenosylmethionine synthetase has been purified to apparent homogeneity from human chronic lymphocytic leukemia cells. Equilibrium sedimentation studies and denaturing polyacrylamide gel electrophoresis indicate that the native enzyme has a molecular weight of 185,000 and a subunit composition of either alpha alpha' beta 2, alpha 2 beta 2, or alpha' 2 beta 2, where alpha, alpha', and beta are polypeptide chains of molecular weight 53,000, 51,000, and 38,000. The alpha and alpha' subunits appear to be the same polypeptide and presumably differ by some kind of post-translational modification. Stoichiometric studies show that the expected products S-adenosylmethionine, pyrophosphate, and orthophosphate are generated in equimolar amounts. The enzyme exhibits linear kinetics with respect to substrate dependency and product inhibition, except for orthophosphate which shows parabolic noncompetitive inhibition with respect to ATP. Initial velocity studies of substrate dependence and product inhibition indicate a steady state mechanism that is ordered Bi Ter with ATP adding before L-methionine and S-adenosylmethionine as the first product released. Pyrophosphate and orthophosphate, however, appear to be released by a random mechanism. Free Mg2+ is an essential activator with a half-maximal effect at 1.0 mM. The Km and Kia for ATP are 31 microM and 84 microM, and the Km for L-methionine is 3.3 microM. The enzyme also has tripolyphosphatase activity which is stimulated by S-adenosylmethionine.  相似文献   

10.
The GTP-induced dissociation of T alpha from T beta gamma initiates the release of transducin from photolyzed rhodopsin and the subsequent activation of the cGMP phosphodiesterase. In this study, site-specific proteolysis and immunoprecipitation were used to map the domain of T alpha that interacts with T beta gamma. We found that Staphylococcus aureus V8 protease rapidly removes a small fragment from T alpha under native conditions, resulting in the formation of a single 38-kDa polypeptide (T alpha'). Under the same conditions, T beta gamma remains intact. A 4.5-fold decrease in the rate of T alpha cleavage by S. aureus protease was observed in the presence of T beta gamma, suggesting T beta gamma binding blocks the protease-sensitive site on T alpha. Amino acid sequence analysis indicated that T alpha' is derived from the cleavage of T alpha at Glu-21. The ability of T alpha' to interact with and activate the retinal phosphodiesterase is not diminished. However, T alpha' is unable to participate in T beta gamma-dependent activities such as the light-stimulated binding of guanine nucleotides, binding to photoexcited rhodopsin, and ADP-ribosylation catalyzed by pertussis toxin. Moreover, the anti-T alpha monoclonal antibody TF16 was able to precipitate T beta gamma in the presence of T alpha, but not with either T alpha' or T alpha-guanosine 5'-O-(3-thiotriphosphate). We conclude that the amino-terminal region of T alpha participates in T beta gamma interaction and discuss our results with respect to the known structure and function of transducin.  相似文献   

11.
Solubilization of the major outer membrane protein of Rhodopseudomonas sphaeroides, and subsequent isolation, has been achieved by both non-detergent- and detergent-based methods. The protein was differentially solubilized from other outer membrane proteins in 5 M guanidine thiocyanate which was exchanged by dialysis for 7 M urea. The urea-soluble protein was purified to homogeneity by a combination of DEAE-Sephadex chromatography and preparative electrophoretic techniques. Similar to the peptidoglycan-associated proteins of other Gram-negative bacteria, the protein was also purified by differential temperature extraction of the outer membrane in the presence of sodium dodecyl sulfate (SDS) followed by preparative SDS-polyacrylamide gel electrophoresis. Immunochemical analysis of the proteins isolated by the two techniques established the immunochemical identity and homogeneity of each preparation. Immunoblots of SDS-polyacrylamide gels revealed that antibody directed against the major outer membrane protein reacted with the three high molecular weight aggregates present in the outer membrane which we have previously shown to be composed of the major outer membrane protein and three nonidentical small molecular weight proteins.  相似文献   

12.
Beta-conglycinin consisting of six major isomers (designated B1- to B6-conglycinin) was dissociated and fractionated on columns of DEAE- and CM-Sephadex in buffers containing 6 M urea. Three major (alpha, alpha' and beta) and one minor (gamma) subunits were isolated and further characterized by gel electrophoresis and gel electrofocusing. Gel electrophoresis in urea and in sodium dodecyl sulfate, and gel filtration in 6 M guanidine hydrochloride gave a molecular weight of 57 000 for alpha, alpha' subunits; and 42 000 for beta and gamma subunits. The isoelectric points of the isolated subunits, measured by disc gel electrofocusing, were as follows: alpha, 4.90; alpha', 5.18; beta, 5.66-6.00. On gel electrofocusing, beta subunit showed four microheterogeneous components; three of them comprised 95% of the total beta subunit. Leucine and valine were the N-terminal amino acids of beta and alpha alpha' subunits, respectively. The isolated subunits contained mannose and glucosamine in varying quantities. Two carbohydrate moieties were calculated for one mole of alpha, alpha' subunits; and one carbohydrate moiety for the beta subunit. Considerable similarity in the amino acid composition of alpha and alpha' subunits was observed. The beta subunit was devoid of cysteine and methionine; and in comparison with alpha, alpha' subunits, had a higher content of hydrophobic amino acids. The isolated subunits exhibited antigen-antibody reaction with antisera to the native beta-conglycinin. Each of them was partglycinins. The alpha and alpha' subunits were in addition identical with each other and with B5-, B6-conglycinins. They were immunologically unrelated with beta subunit. The recovery of immuno-properties from the individual subunits may be attributed to the reconstruction of the three-dimensional structure upon removal of denaturing reagents.  相似文献   

13.
R C Rubenstein  M E Linder  E M Ross 《Biochemistry》1991,30(44):10769-10777
The selective regulation of Gs (long and short forms), Gi's (1, 2, and 3), and Go by the beta-adrenergic receptor was assessed quantitatively after coreconstitution of purified receptor, purified G-protein beta gamma subunits, and individual recombinant G-protein alpha subunits that were expressed in and purified from Escherichia coli. Receptor and beta gamma subunits were incorporated into phospholipid vesicles, and the alpha subunits bound to the vesicles stoichiometrically with respect to beta gamma. Efficient regulation of alpha subunit by receptor required the presence of beta gamma. Regulation of G proteins was measured according to the stimulation of the initial rate of GTP gamma S binding, steady-state GTPase activity, and equilibrium GDP/GDP exchange. The assays yielded qualitatively similar results. GDP/GDP exchange was a first-order reaction for each subunit. The rate constant increased linearly with the concentration of agonist-liganded receptor, and the dependence of the rate constant on receptor concentration was a reproducible measurement of the efficiency with which receptor regulated each G protein. Reconstituted alpha s (long or short form) was stimulated by receptor to approximately the extent described previously for natural Gs. Both alpha i,1 and alpha i,3 were regulated with 25-33% of that efficiency. Stimulation of alpha o and alpha i,2 was weak, and stimulation of alpha o was barely detectable over its high basal exchange rate. Reduction of the receptor with dithiothreitol increased the exchange rates for all G proteins but did not alter the relative selectivity of the receptor.  相似文献   

14.
Insulin receptors purified from human placental membranes by gel-filtration and insulin-agarose affinity chromatography were found to be composed of eight different high molecular weight complexes as identified by nonreducing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The subunit stoichiometry of these different high molecular weight forms of the insulin receptor were determined by comparisons of silver-stained gel profiles with the autoradiograms of 125I-insulin specifically cross-linked to the alpha subunit and [gamma-32P]ATP specifically autophosphorylated beta subunit gel profiles. Two-dimensional SDS-polyacrylamide gel electrophoresis in the absence and presence of reductant confirmed the subunit stoichiometries as alpha 2 beta 2, alpha 2 beta beta 1, alpha 2 (beta 1)2, alpha 2 beta, alpha 2 beta 1, alpha 2, alpha beta, and beta, where alpha is the Mr = 130,000 subunit, beta is the Mr = 95,000 subunit, and beta 1 is the Mr = 45,000 subunit. Treatment of the insulin receptor preparations with oxidized glutathione or N-ethylmaleimide prior to SDS-polyacrylamide gel electrophoresis increased the relative amount of the alpha 2 beta 2 complex concomitant with a total disappearance of the alpha 2 beta, alpha 2 beta 1, alpha 2, and free beta forms. The effects of oxidized glutathione were found to be completely reversible upon extensive washing of the treated insulin receptors. In contrast, the effects of N-ethylmaleimide were totally irreversible by washing, consistent with known sulfhydryl alkylating properties of this reagent. The formation of these lower molecular weight insulin receptor subunit complexes was further demonstrated to be due to SDS/heat-dependent intramolecular sulfhydryl-disulfide exchange occurring within the alpha 2 beta 2 complex. These studies demonstrate that the largest disulfide-linked complex (alpha 2 beta 2) is the predominant insulin receptor form purified from the human placenta with the other complexes being generated by proteolysis and by internal subunit dissociation.  相似文献   

15.
The G-protein involved in alpha 1-adrenergic receptor signaling was identified using two different approaches. First, purified rat liver membranes were incubated with [alpha-32P]GTP in the absence or presence of the adrenergic agonist (-)-epinephrine, or in the presence of GTP. After UV irradiation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography, covalent labeling of a number of proteins was apparent and could be blocked by unlabeled GTP. In the preparation treated with (-)-epinephrine alone, labeling of a 74-kDa species was markedly enhanced. Enhanced labeling of 40-50-kDa species was also observed. Labeling of the 74-kDa protein was also evident in similarly treated membranes prepared from FRTL-5 thyroid cells, which contain abundant alpha 1-adrenergic receptors, but not in those prepared from turkey erythrocytes or NIH 3T3 fibroblasts, which are essentially devoid of alpha 1-receptors. Second, alpha 1-agonist-receptor-G-protein ternary complex formation was induced by incubating purified rat liver membranes with (-)-epinephrine. Rauwolscine (10(-7) M) and (+/-)-propranolol (10(-6) M) were included to prevent activation of alpha 2- and beta-adrenergic receptors by (-)-epinephrine. The ternary complex of hormone, receptor, and G-protein was solubilized, partially purified using heparin- and wheat germ agglutinin-agarose, and reconstituted into phospholipid vesicles. The vesicles displayed agonist-stimulated guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding that was blocked by phentolamine (10(-4) M). By contrast, stimulation of GTP gamma S binding was not evident when the vesicles were incubated with the beta-agonist, isoproterenol. Incubation of the vesicles with [alpha-32P]GTP or [alpha-32P]azido-GTP in the presence of (-)-epinephrine, followed by photolysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography, resulted in the covalent labeling of a 74-kDa protein. Labeling of this protein could be blocked by preincubation with phentolamine or unlabeled GTP. These findings provide direct evidence for the coupling of the alpha 1-adrenergic receptor to a previously uncharacterized G-protein (termed Gh), which has an apparent molecular mass of approximately 74 kDa.  相似文献   

16.
Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 and partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor alpha subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[gamma-32P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor beta subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins.  相似文献   

17.
Dog liver glutathione S-transferase activities are associated with five cytosolic proteins and to approximately 1.5% with microsomal proteins determined on the basis of activity conjugating to 1-chloro-2,4-dinitrobenzene. The four major cytosolic enzymes were purified to apparent homogeneity by sequential use of ion-exchange, hydrophobic, hydroxyapatite and affinity chromatography. The isolated transferases are binary combinations of three classes of subunits: alpha (Mr = 26,000), beta (Mr = 27,000), gamma (Mr = 28,500). They were classified by roman numerals assigned in order of increasing isoelectric point as DI alpha gamma (pI 6.4), DII alpha alpha (pI 6.9), DIII beta gamma (pI 8.1), and DIV beta gamma (pI 8.7). Additionally, traces of conjugating activity may be attributed to a, beta monomeric or dimeric protein with cationic character. The differences in catalytic specificity, temperature and pH dependence of activity, and sensitivity and kinetic response to inhibitory ligands may reflect the intrinsic structural heterogeneity of the transferases. At physiological glutathione concentrations DI alpha gamma accounted for roughly 60% of the total 1-chloro-2,4-dinitrobenzene-conjugating activity, the rank order of activity being DI alpha gamma greater than DII alpha alpha greater than DIV beta gamma greater than DIII beta gamma. The glutathione-dependent denitration of organic nitrates seems to be restricted to the cationic enzymes, whereas 1,2-dichloro-4-nitrobenzene-conjugating activity is exclusively associated with the anionic transferases, DI alpha gamma much greater than DII alpha alpha. Arrhenius plots from initial rate experiments performed over a range of temperatures (15-40 degrees C) exhibit an upward bend for DI alpha gamma, an apparently constant slope for DII alpha alpha and DIII beta gamma, and a downward bend for DIV beta gamma.  相似文献   

18.
The relationship between the alpha and alpha' subunits of casein kinase II was studied. For this study, a rapid scheme for the purification of the enzyme from bovine testis was developed. Using a combination of chromatography on DEAE-cellulose, phosphocellulose, hydroxylapatite, gel filtration on Sephacryl S-300 and heparin-agarose, the enzyme was purified approximately 7,000-fold. The purification scheme was completed within 48 h and resulted in the purification of milligram quantities of casein kinase II from 1 kg of fresh bovine testis. The purified enzyme had high specific activity (3,000-5,000 nmol of phosphate transferred per min/mg protein) when assayed at 30 degrees C with ATP and the synthetic peptide RRRDDDSDDD as substrates. The isolated enzyme was a phosphoprotein with an alkali-labile phosphate content exceeding 2 mol/mol protein. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis three polypeptides were apparent: alpha (Mr 45,000), alpha' (Mr 40,000), and beta (Mr 26,000). Several lines of evidence conclusively demonstrated that the alpha and alpha' subunits are distinct polypeptides. Two-dimensional maps of 125I-tryptic peptides derived from the two proteins were related, but distinct. An antipeptide antibody was raised in rabbits which reacted only with the alpha subunit on immunoblots and failed to react with either the alpha' or beta subunits. Direct comparison of peptide sequences obtained from the alpha and alpha' subunits revealed differences between the two polypeptides. The results of this study clearly demonstrate that the alpha and alpha' subunits of casein kinase II are not related by post-translational modification and are probably encoded by different genes.  相似文献   

19.
Cytoplasmic elongation factor 1 alpha (EF-1 alpha) [corrected] was purified to homogeneity in high yield from the two different yeasts Saccharomyces carlsbergensis (S. carls.) and Schizosaccharomyces pombe (S. pombe). The purification was easily achieved by CM-Sephadex column chromatography of the breakthrough fractions from DEAE-Sephadex chromatography of cell-free extracts. The basic proteins have a molecular weight of 47,000 for the S. carls. factor and of 49,000 for the S. pombe factor. While the purified yeast EF-1 alpha s function analogously to other eukaryotic factors and the E. coli EF-Tu in Phe-tRNA binding and polyphenylalanine synthesis, the yeast factor unusually hydrolyzed GTP on yeast ribosomes upon addition of Phe-tRNA in the absence of poly(U) as mRNA. This novelty is probably owing to the yeast ribosomes, which are assumed to lack elongation factor 3-equivalent component(s). Trypsin and chymotrypsin selectively cleaved the two yeast factors to generate resistant fragments with the same molecular weight of 43,000 (by trypsin) and of 44,000 (by chymotrypsin), respectively. Those cleavage sites were characteristically protected by the presence of several ligands bound to EF-1 alpha such as GDP, GTP, and aminoacyl-tRNA. Based on the sequence analysis of the fragments generated by the two proteases, the partial amino acid sequence of the S. carls. EF-1 alpha was deduced to be in accordance with the N-terminal region covering positions (1) to 94 and two Lys residues at the C-terminal end of the predicted total sequence of the Saccharomyces cerevisiae (S. cerev.) factor derived from DNA analysis, except for a few N-terminal residues, confirming the predicted S. cerev. sequence at the protein level. EF-1 beta and EF-1 beta gamma were isolated and highly purified as biologically active entities from the two yeasts. EF-1 beta s from the two yeasts have the same molecular weight of 27,000, whereas component gamma of the S. carls. EF-1 beta gamma showed a higher molecular weight (47,000) than that of the S. pombe factor (40,000). It was also shown that a stoichiometric complex was formed between EF-1 alpha and EF-1 beta gamma from S. pombe. Furthermore, a considerable amount of Phe-tRNA binding activity was distributed in the EF-1H (probably EF-1 alpha beta gamma) fraction from freshly prepared cell-free extracts of yeast.  相似文献   

20.
A novel ATPase was solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, with low ionic strength buffer containing EDTA. The enzyme was purified to homogeneity by hydrophobic chromatography and gel filtration. The molecular weight of the purified enzyme was estimated to be 360,000. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate revealed that it consisted of three kinds of subunits, alpha, beta, and gamma, whose molecular weights were approximately 69,000, 54,000, and 28,000, respectively, and the most probable subunit stoichiometry was alpha 3 beta 3 gamma 1. The purified ATPase hydrolyzed ATP, GTP, ITP, and CTP but not UTP, ADP, AMP, or p-nitrophenylphosphate. The enzyme was highly heat stable and showed an optimal temperature of 85 degrees C. It showed an optimal pH of around 5, very little activity at neutral pH, and another small activity peak at pH 8.5. The ATPase activity was significantly stimulated by bisulfite and bicarbonate ions, the optimal pH remaining unchanged. The Lineweaver-Burk plot was linear, and the Km for ATP and the Vmax were estimated to be 1.6 mM and 13 mumol Pi.mg.-1.min-1, respectively, at pH 5.2 at 60 degrees C in the presence of bisulfite. The chemical modification reagent, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, caused inactivation of the ATPase activity although the enzyme was not inhibited by N,N'-dicyclohexylcarbodiimide, N-ethyl-maleimide, azide or vanadate. These results suggest that the ATPase purified from membranes of S. acidocaldarius resembles other archaebacterial ATPases, although a counterpart of the gamma subunit has not been found in the latter. The relationship of the S. acidocaldarius ATPase to other ion-transporting ATPases, such as F0F1 type or E1E2 type ATPases, was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号