首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constitutive activation of NF-κB signaling is a key event in virus- and non-virus-induced carcinogenesis. We have previously reported that cutaneous human papillomavirus type 38 (HPV38) displays transforming properties in in vitro and in vivo experimental models. However, the involvement of NF-κB signaling in HPV38-induced cell growth transformation remains to be determined. In this study, we showed that HPV38 E6 and E7 activate NF-κB and that inhibition of the pathway with the IκBα superrepressor sensitizes HPV38E6E7-immortalized human keratinocytes to tumor necrosis factor alpha (TNF-α)- and UVB radiation-mediated apoptosis. Accordingly, inhibition of NF-κB signaling resulted in the downregulation of NF-κB-regulated antiapoptotic genes, including cIAP1, cIAP2, and xIAP genes. These findings demonstrate a critical role of NF-κB activity in the survival of HPV38E6E7-immortalized human keratinocytes exposed to cytokine or UV radiation. Our data provide additional evidence for cooperation between beta HPV infection and UV irradiation in skin carcinogenesis.  相似文献   

2.
The oncoproteins E6 and E7 of human papillomavirus type 38 (HPV38) display several transforming activities in vitro, including immortalization of primary human keratinocytes. To evaluate the oncogenic activities of the viral proteins in an in vivo model, we generated transgenic mice expressing HPV38 E6 and E7 under the control of the bovine homologue of the human keratin 10 (K10) promoter. Two distinct lines of HPV38 E6/E7-expressing transgenic mice that express the viral genes at different levels were obtained. In both lines, HPV38 E6 and E7 induced cellular proliferation, hyperplasia, and dysplasia in the epidermis. The rate of occurrence of these events was proportional to the levels of HPV38 E6 and E7 expression in the two transgenic lines. Exposure of the epidermis of nontransgenic mice to UV led to p21WAF1 accumulation and cell cycle arrest. In contrast, keratinocytes from transgenic mice continued to proliferate and were not positive for p21WAF1, indicating that cell cycle checkpoints are altered in keratinocytes expressing the viral genes. Although the HPV38 E6/E7-expressing transgenic mice did not develop spontaneous tumors during their life span, two-stage carcinogen treatment led to a high incidence of papillomas, keratoacanthomas, and squamous-cell carcinomas in HPV38 mice compared with nontransgenic animals. Together, these data show that HPV38 E6 and E7 display transforming properties in vivo, providing further support for the role of HPV38 in carcinogenesis.  相似文献   

3.
The cutaneous beta human papillomavirus (beta HPV) types appear to be involved in skin carcinogenesis. However, only a few beta HPVs have been investigated so far. Here, we compared the properties of E6 and E7 oncoproteins from six uncharacterized beta HPVs (14, 22, 23, 24, 36, 49). Only HPV49 E6 and E7 immortalized primary human keratinocytes and efficiently deregulated the p53 and pRb pathways. Furthermore, HPV49 E6, similarly to E6 from the oncogenic HPV16, promoted p53 degradation.  相似文献   

4.
High-risk human papillomaviruses (HPVs) are the causative agents of certain human cancers. HPV type 16 (HPV16) is the papillomavirus most frequently associated with cervical cancer in women. The E6 and E7 genes of HPV are expressed in cells derived from these cancers and can transform cells in tissue culture. Animal experiments have demonstrated that E6 and E7 together cause tumors. We showed previously that E6 and E7 together or E7 alone could induce skin tumors in mice when these genes were expressed in the basal epithelia of the skin. In this study, we investigated the role that the E6 gene plays in carcinogenesis. We generated K14E6 transgenic mice, in which the HPV16 E6 gene was directed in its expression by the human keratin 14 promoter (hK14) to the basal layer of the epidermis. We found that E6 induced cellular hyperproliferation and epidermal hyperplasia and caused skin tumors in adult mice. Interestingly, the tumors derived from E6 were mostly malignant, as opposed to the tumors from E7 mice, which were mostly benign. This result leads us to hypothesize that E6 may contribute differently than E7 to HPV-associated carcinogenesis; whereas E7 primarily contributes to the early stages of carcinogenesis that lead to the formation of benign tumors, E6 primarily contributes to the late stages of carcinogenesis that lead to malignancy.  相似文献   

5.
Cutaneous beta human papillomavirus (HPV) types appear to be involved in the development of non-melanoma skin cancer (NMSC); however, it is not entirely clear whether they play a direct role. We have previously shown that E6 and E7 oncoproteins from the beta HPV type 38 display transforming activities in several experimental models. To evaluate the possible contribution of HPV38 in a proliferative tissue compartment during carcinogenesis, we generated a new transgenic mouse model (Tg) where HPV38 E6 and E7 are expressed in the undifferentiated basal layer of epithelia under the control of the Keratin 14 (K14) promoter. Viral oncogene expression led to increased cellular proliferation in the epidermis of the Tg animals in comparison to the wild-type littermates. Although no spontaneous formation of tumours was observed during the lifespan of the K14 HPV38 E6/E7-Tg mice, they were highly susceptible to 7,12-dimethylbenz(a)anthracene (DMBA)/12-0-tetradecanoylphorbol-13-acetate (TPA) two-stage chemical carcinogenesis. In addition, when animals were exposed to ultraviolet light (UV) irradiation, we observed that accumulation of p21(WAF1) and cell-cycle arrest were significantly alleviated in the skin of Tg mice as compared to wild-type controls. Most importantly, chronic UV irradiation of Tg mice induced the development of actinic keratosis-like lesions, which are considered in humans as precursors of squamous cell carcinomas (SCC), and subsequently of SCC in a significant proportion of the animals. In contrast, wild-type animals subjected to identical treatments did not develop any type of skin lesions. Thus, the oncoproteins E6 and E7 from beta HPV38 significantly contribute to SCC development in the skin rendering keratinocytes more susceptible to UV-induced carcinogenesis.  相似文献   

6.
7.
In most cervical cancers, DNAs of high-risk mucosotropic human papillomaviruses (HPVs), such as types 16 and 18, are maintained so as to express two viral proteins, E6 and E7, suggesting that they play important roles in carcinogenesis. The carboxy-terminal PDZ domain-binding motif of the E6 proteins is in fact essential for transformation of rodent cells and induction of hyperplasia in E6-transgenic mouse skin. To date, seven PDZ domain-containing proteins, including DLG1/hDLG, which is a human homologue of the Drosophila discs large tumor suppressor (Dlg), have been identified as targets of high-risk HPV E6 proteins. Here, we describe DLG4/PSD95, another human homologue of Dlg, as a novel E6 target. DLG4 was found to be expressed in normal human cells, including cervical keratinocytes, but only to a limited extent in both HPV-positive and HPV-negative cervical cancer cell lines. Expression of HPV18 E6 in HCK1T decreased DLG4 levels more strongly than did HPV16 E6, the carboxy-terminal motif of the proteins being critical for binding and degradation of DLG4 in vitro. DLG4 levels were restored by expression of either E6AP-specific short hairpin RNA or bovine papillomavirus type 1 E2 in HeLa but not CaSki or SiHa cells, reflecting downregulation of DLG4 mRNA as opposed to protein by an HPV-independent mechanism in HPV16-positive cancer lines. The tumorigenicity of CaSki cells was strongly inhibited by forced expression of DLG4, while growth in culture was not inhibited at all. These results suggest that DLG4 may function as a tumor suppressor in the development of HPV-associated cancers.  相似文献   

8.
It has previously been shown that the E7 protein from the cutaneous human papillomavirus type 1 (HPV1), which is associated with benign skin lesions, binds the product of the tumor suppressor gene retinoblastoma (pRb) with an efficiency similar to that of the E7 protein from the oncogenic HPV type 16. Despite this ability, HPV1 E7 does not display any activity in transforming primary cells. In addition, the two viral proteins differ in their mechanisms of targeting pRb. HPV16 E7 promotes pRb destabilization, while cells expressing HPV1 E7 do not show any decrease in pRb levels. In this study, we show that HPV1 E7, in contrast to HPV16 E7, has only a weak activity to neutralize the effect of cyclin-dependent kinase inhibitor p16INK4a. By generation of HPV1/16 E7 chimeric proteins, we have identified a central motif in the two E7 proteins, which determines their different abilities to overcome the p16INK4a-mediated cell cycle arrest. This motif is located downstream of the pRb-binding domain and comprises only three amino acids in HPV16 E7. Swapping this central motif in the two viral proteins causes an exchange of their activities involved in circumventing the inhibitory function of p16INK4a. Most importantly, our data show that the efficiency of the E7 proteins in neutralizing the inhibitory effect of p16INK4a correlates with their ability to promote pRb degradation.  相似文献   

9.
We previously reported that the oncoproteins E6 and E7 from cutaneous human papillomavirus type 38 (HPV38) can immortalize primary human keratinocytes in vitro and sensitize transgenic mice to develop skin cancer in vivo. Immunofluorescence staining revealed that human keratinocytes immortalized by HPV38 E6 and E7 display fewer actin stress fibers than do control primary keratinocyte cells, raising the possibility of a role of the viral oncoproteins in the remodeling of the actin cytoskeleton. In this study, we show that HPV38 E7 induces actin stress fiber disruption and that this phenomenon correlates with its ability to downregulate Rho activity. The downregulation of Rho activity by HPV38 E7 is mediated through the activation of the CK2-MEK-extracellular signal-regulated kinase (ERK) pathway. In addition, HPV38 E7 is able to induce actin fiber disruption by binding directly to eukaryotic elongation factor 1A (eEF1A) and abolishing its effects on actin fiber formation. Finally, we found that the downregulation of Rho activity by HPV38 E7 through the CK2-MEK-ERK pathway facilitates cell growth proliferation. Taken together, our data support the conclusion that HPV38 E7 promotes keratinocyte proliferation in part by negatively regulating actin cytoskeleton fiber formation through the CK2-MEK-ERK-Rho pathway and by binding to eEF1A and inhibiting its effects on actin cytoskeleton remodeling.  相似文献   

10.
Human papillomaviruses (HPV) of genus Betapapillomavirus (betaPV) are associated with nonmelanoma skin cancer development in epidermodysplasia verruciformis (EV) and immunosuppressed patients. Epidemiological and molecular studies suggest a carcinogenic activity of betaPV during early stages of cancer development. Since viral oncoproteins delay and perturb keratinocyte differentiation, they may have the capacity to either retain or confer a “stem cell-like” state on oncogene-expressing cells. The aim of this study was to determine (i) whether betaPV alters the expression of cell surface markers, such as CD44 and epithelial cell adhesion molecule (EpCAM), that have been associated with epithelial stemness, and (ii) whether this confers functional stem cell-like properties to human cutaneous keratinocytes. Fluorescence-activated cell sorter (FACS) analysis revealed an increase in the number of cells with high CD44 and EpCAM expression in keratinocyte cultures expressing HPV type 8 (HPV8) oncogenes E2, E6, and E7. Particularly through E7 expression, a distinct increase in clonogenicity and in the formation and size of tumor spheres was observed, accompanied by reduction of the epithelial differentiation marker Calgranulin B. These stem cell-like properties could be attributed to the pool of CD44high EpCAMhigh cells, which was increased within the E7 cultures of HPV5, -8, and -20. Enhanced EpCAM levels were present in organotypic skin cultures of primary keratinocytes expressing E7 of the oncogenic HPV types HPV5, -8, and -16 and in clinical samples from EV patients. In conclusion, our data show that betaPV may increase the number of stem cell-like cells present during early carcinogenesis and thus enable the persistence and accumulation of DNA damage necessary to generate malignant stem cells.  相似文献   

11.
《Seminars in Virology》1994,5(5):357-367
There are now several examples where experimental and epidemiologic data have implied a causative role for viruses in human cancer. Human papillomavirus (HPV) DNA is found in approximately 90% of cervical cancers. Only a subset of the HPV types that infect the anogential tissues, however, are associated with cancer. Interestingly, only the cloned DNA of this subset is capable of immortalizing human primary genital keratinocytes in culture. The oncoproteins of the HPVs are encoded by the E6 and E7 genes. Analogous to the oncoproteins of certain other DNA tumor viruses, the E6 and E7 proteins have been shown to functionally inactivate the tumor suppressor proteins p53 and pRB, respectively. We will review what is known of the mechanisms by which the E6 and E7 proteins inactivate these tumor suppressors and the evidence that these activities are related to the transforming capabilities of the HPVs associated with cancer.  相似文献   

12.
Human papillomavirus (HPV) is the causative agent of human cervical cancer and has been associated with oropharyngeal squamous cell carcinoma development. Although prophylactic vaccines have been developed, there is a need to develop new targeted therapies for individuals affected with malignant infected lesions in these locations, which must be tested in appropriate models. Cutaneous beta HPV types appear to be involved in skin carcinogenesis. Virus oncogenicity is partly achieved by inactivation of retinoblastoma protein family members by the viral E7 gene. Here we show that the E7 protein of cutaneous beta HPV5 binds pRb and promotes its degradation. In addition, we described an in vivo model of HPV-associated disease in which artificial human skin prepared using primary keratinocytes engineered to express the E7 protein is engrafted onto nude mice. Expression of E7 in the transplants was stably maintained for up to 6 months, inducing the appearance of lesions that, in the case of HPV16 E7, histologically resembled human anogenital lesions caused by oncogenic HPVs. Moreover, it was confirmed through biomarker expression analysis via immunodetection and/or quantitative PCR from mRNA and miRNA that the 16E7-modified engrafted skin shares molecular features with human HPV-associated pretumoral and tumoral lesions. Finally, our findings indicate a decrease of the in vitro capacity of HPV5 E7 to reduce pRb levels in vivo, possibly explaining the phenotypical differences when compared with 16E7-grafts. Our model seems to be a valuable platform for basic research into HPV oncogenesis and preclinical testing of HPV-associated antitumor therapies.  相似文献   

13.
14.
Previous studies have shown that the E7 gene of human papillomavirus (HPV) type 16 or 18 alone was sufficient for immortalization of human foreskin epithelial cells (HFE) and that the efficiency was increased in cooperation with the respective E6 gene, whereas the HPV6 E6 or E7 gene was not active in HFE. To detect weak immortalizing activities of the HPV6 genes, cells were infected with recombinant retroviruses containing HPV genes, alone and in homologous and heterologous combinations. The HPV6 genes, alone or together (HPV6 E6 plus HPV6 E7), were not able to immortalize cells. However the HPV6 E6 gene, in concert with HPV16 E7, increased the frequency of immortalization threefold over that obtained with HPV16 E7 alone. Interestingly, 6 of 20 clones containing the HPV16 E6 gene and the HPV6 E7 gene were immortalized, whereas neither gene alone was sufficient. Thus, the HPV6 E6 and E7 genes have weak immortalizing activities which can be detected in cooperation with the more active transforming genes of HPV16. Acute expression of the HPV6 and HPV16 E6 and E7 genes revealed that only HPV16 E7 was able to stimulate the proliferation of cells in organotypic culture, resulting in increased expression of the proliferative cell nuclear antigen and the formation of a disorganized epithelial layer. Additionally, combinations of genes that immortalized HFE cells (HPV16 E6 plus HPV16 E7, HPV16 E6 plus HPV6 E7, and HPV6 E6 plus HPV16 E7) also stimulated proliferation.  相似文献   

15.
16.
Cervical cancer cells express high-risk human papillomavirus (HPV) E6 and E7 proteins, and repression of HPV gene expression causes the cells to cease proliferation and undergo senescence. However, it is not known whether both HPV proteins are required to maintain the proliferative state of cervical cancer cells, or whether mutations that accumulate during carcinogenesis eliminate the need for one or the other of them. To address these questions, we used the bovine papillomavirus E2 protein to repress the expression of either the E6 protein or the E7 protein encoded by integrated HPV18 DNA in HeLa cervical carcinoma cells. Repression of the E7 protein activated the Rb pathway but not the p53 pathway and triggered senescence, whereas repression of the E6 protein activated the p53 pathway but not the Rb pathway and triggered both senescence and apoptosis. Telomerase activity, cyclin-dependent kinase activity, and expression of c-myc were markedly inhibited by repression of either E6 or E7. These results demonstrate that continuous expression of both the E6 and the E7 protein is required for optimal proliferation of cervical carcinoma cells and that the two viral proteins exert distinct effects on cell survival and proliferation. Therefore, strategies that inhibit the expression or activity of either viral protein are likely to inhibit the growth of HPV-associated cancers.  相似文献   

17.
Cervical carcinoma is the predominant cancer among malignancies in women throughout the world, and human papillomavirus (HPV) 16 is the most common agent linked to human cervical carcinoma. The present study was performed to investigate the mechanisms of immune escape in HPV-induced cervical cancer cells. The presence of HPV oncoproteins E6 and E7 in the extracellular fluids of HPV-containing cervical cancer cell lines SiHa and CaSki was demonstrated by ELISA. The effect of HPV 16 oncoproteins E6 and E7 on the production of IFN-gamma by IL-18 was assessed. E6 and E7 proteins reduced IL-18-induced IFN-gamma production in both primary PBMCs and the NK0 cell line. FACS analysis revealed that the viral oncoproteins reduced the binding of IL-18 to its cellular surface receptors on NK0 cells, whereas there was no effect of oncoproteins on IL-1 binding to its surface IL-1 receptors on D10S, a subclone of the murine Th cell D10.G4.1. In vitro pull-down assays also revealed that the viral oncoproteins and IL-18 bound to IL-18R alpha-chain competitively. These results suggest that the extracellular HPV 16 E6 and E7 proteins may inhibit IL-18-induced IFN-gamma production locally in HPV lesions through inhibition of IL-18 binding to its alpha-chain receptor. Down-modulation of IL-18-induced immune responses by HPV oncoproteins may contribute to viral pathogenesis or carcinogenesis.  相似文献   

18.
19.
Human papillomaviruses (HPV) are causative agents in a variety of human diseases; for example over 99% of cervical carcinomas contain HPV DNA sequences. Often in cervical carcinoma the HPV genome is integrated into the host genome resulting in unregulated expression of the viral transforming proteins E6 and E7. Therefore viral integration is a step toward HPV-induced carcinogenesis. Integration of the HPV genome could occur following double-strand DNA breaks that could arise during viral DNA replication. We investigated the fidelity of HPV 16 E1- and E2-mediated DNA replication of non-damaged and UVC-damaged templates in a variety of cell lines with different genetic backgrounds; C33a (derived from an HPV-negative cervical carcinoma), XP30RO (deficient in the by-pass polymerase eta (poleta)), XP30eta (expressing a restored wild-type poleta), XP12RO (nucleotide excision repair defective), and MRC5 (derived from a 14-week-old human fetus). The results demonstrate that the fidelity of E1- and E2-mediated DNA replication is reflective of the genetic background in which the assays are carried out. For example, restoring poleta to the XP30 cell line results in a 3-fold drop in the number of mutants obtained following replication of a UVC-damaged template. A relatively high percentage of the mutant-replicated molecules arise as a result of genetic rearrangement. This is the first time such studies have been carried out with an HPV replication system, and the results are discussed in the context of the HPV life cycle and what is known about HPV genomes in human cancers.  相似文献   

20.
Fei JW  de Villiers EM 《PloS one》2012,7(4):e35540
UV exposure and p53 mutations are major factors in non-melanoma skin cancer, whereas a role for HPV infections has not been defined. Previous data demonstrated the wtp53-mediated degradation of cutaneous HPV20E6 by caspase-3. ΔNp63α and hot-spot mutant p53R248W conveyed a protective effect on HPV20E6 under these conditions. We demonstrate a differential regulation by wtp53 of the E6 genes of cutaneous types HPV4, HPV5, HPV7, HPV27, HPV38, HPV48, HPV60 and HPV77. Caspase- or proteasome-mediated down-regulation was HPV type dependent. Mutant p53R248W up-regulated expression of all these E6 proteins as did ΔNp63α except for HPV38E6 which was down-regulated by the latter. None of these cellular proteins affected HPV41E6 expression. Ectopic expression of both mutp53R248W and ΔNp63α in the normal NIKS keratinocyte cell line harbouring endogenous p53 and p63however led to a down-regulation of HPV20E6. We demonstrate that HPV20E6 expression in these cells is modulated by additional, yet unidentified, cellular protein(s), which are not necessarily involved in apoptosis or autophagy. We further demonstrate proliferation of HPV20E6-expressing keratinocytes. Levels of proteins involved in cell cycle control, cyclin-D1, cdk6 and p16(INK4a), phosphorylated pRB, as well as c-Jun and p-c-Jun, were all increased in these cells. HPV20E6 did not compete for the interaction between p16(INK4a) with cyclin-D1 or cdk6. Phosphorylation of pRB in the HPV20E6 expressing cells seems to be sufficient to override the cytokenetic block induced by the p16(INK4a)/pRB pathway. The present study demonstrates the diverse influence of p53 family members on individual cutaneous HPVE6 proteins. HPV20E6 expression also resulted in varying protein levels of factors involved in proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号