首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Current JAK2 inhibitors used for myeloproliferative neoplasms (MPN) treatment are not specific enough to selectively suppress aberrant JAK2 signalling and preserve physiological JAK2 signalling. We tested whether combining a JAK2 inhibitor with a series of serine threonine kinase inhibitors, targeting nine signalling pathways and already used in clinical trials, synergized in inhibiting growth of haematopoietic cells expressing mutant and wild‐type forms of JAK2 (V617F) or thrombopoietin receptor (W515L). Out of 15 kinase inhibitors, the ZSTK474 phosphatydylinositol‐3′‐kinase (PI3K) inhibitor molecule showed strong synergic inhibition by Chou and Talalay analysis with JAK2 and JAK2/JAK1 inhibitors. Other pan‐class I, but not gamma or delta specific PI3K inhibitors, also synergized with JAK2 inhibitors. Synergy was not observed in Bcr‐Abl transformed cells. The best JAK2/JAK1 and PI3K inhibitor combination pair (ruxolitinib and GDC0941) reduces spleen weight in nude mice inoculated with Ba/F3 cells expressing TpoR and JAK2 V617F. It also exerted strong inhibitory effects on erythropoietin‐independent erythroid colonies from MPN patients and JAK2 V617F knock‐in mice, where at certain doses, a preferential inhibition of JAK2 V617F mutated progenitors was detected. Our data support the use of a combination of JAK2 and pan‐class I PI3K inhibitors in the treatment of MPNs.  相似文献   

2.
Aberrant JAK2 signalling plays a central role in myeloproliferative neoplasms (MPN). JAK2 inhibitors have proven to be clinically efficacious, however, they are not mutation‐specific and competent enough to suppress neoplastic clonal haematopoiesis. We hypothesized that, by simultaneously targeting multiple activated signalling pathways, MPN could be more effectively treated. To this end we investigated the efficacy of BEZ235, a dual PI3K/mTOR inhibitor, alone and in combination with the JAK1/JAK2 inhibitor ruxolitinib, in different preclinical models of MPN. Single‐agent BEZ235 inhibited the proliferation and induced cell cycle arrest and apoptosis of mouse and human JAK2V617F mutated cell lines at concentrations significantly lower than those required to inhibit the wild‐type counterpart, and preferentially prevented colony formation from JAK2V617F knock‐in mice and patients' progenitor cells compared with normal ones. Co‐treatment of BEZ235 and ruxolitinib produced significant synergism in all these in‐vitro models. Co‐treatment was also more effective than single drugs in reducing the extent of disease and prolonging survival of immunodeficient mice injected with JAK2V617F‐mutated Ba/F3‐EPOR cells and in reducing spleen size, decreasing reticulocyte count and improving spleen histopathology in conditional JAK2V617F knock‐in mice. In conclusion, combined inhibition of PI3K/mTOR and JAK2 signalling may represent a novel therapeutic strategy in MPN.  相似文献   

3.
Tyroserleutide (YSL) is a tripeptide compound that has exhibited inhibitory effects on hepatocellular carcinoma in our previous research. The mechanism of this antitumor activity involves the second messenger, Ca(2+). Ca(2+) influences cell function through the Ca(2+)/calmodulin (CaM) pathway, and abnormality of the Ca(2+)/CaM system correlates closely with the occurrence of tumors. In addition, CaM associates with phosphatidylinositol 3 kinase (PI3K), thereby enhancing the activity of PI3K, which promotes cell proliferation. In order to investigate its anti-tumor mechanism, we studied the effects of YSL on CaM protein expression and mRNA level, PI3K activity, PI3K regulatory subunit p85 protein expression and mRNA level, and the mRNA level of PI3K catalytic subunits p110alpha and p110gamma in human hepatocellular carcinoma BEL-7402 xenograft tumors in nude mice. Our results showed that YSL decreased the mRNA level and protein expression of CaM, inhibited the activity of PI3K, and reduced the mRNA level and protein expression of the PI3K regulatory subunit p85 and mRNA level of PI3K catalytic subunits p110alpha and p110gamma. Accordingly, it is suggestive that the anti-tumor effects of YSL may be mediated by down regulation of CaM and PI3K subunits p85 and p110, influencing the signal transduction pathway in the tumor cells and perhaps overcoming the dysfunctional PI3K activity in tumors.  相似文献   

4.
The PI3K pathway is commonly activated in cancer. Only a few studies have attempted to explore the spectrum of phosphorylation signaling downstream of the PI3K cascade. Such insight, however, is imperative to understand the mechanisms responsible for oncogenic phenotypes. By applying MS‐based phosphoproteomics, we mapped 2509 phosphorylation sites on 1096 proteins, and quantified their responses to activation or inhibition of PIK3CA using isogenic knock‐in derivatives and a series of targeted inhibitors. We uncovered phosphorylation changes in a wide variety of proteins involved in cell growth and proliferation, many of which have not been previously associated with PI3K signaling. A significant update of the posttranslational modification database PHOSIDA ( http://www.phosida.com ) allows efficient use of the data. All MS data have been deposited in the ProteomeXchange with identifier PXD003899 ( http://proteomecentral.proteomexchange.org/dataset/PXD003899 ).  相似文献   

5.
Retinoic acid (RA), the most potent natural form of vitamin A, is a key morphogen in vertebrate development and a potent regulator of both adult and embryonic cell differentiation. Specifically, RA regulates clustered Hox gene expression during embryogenesis and is required to establish the anteroposterior body plan. The PI3K/Akt pathway was also reported to play an essential role in the process of RA‐induced cell differentiation. Therefore, we tested whether the PI3K/Akt pathway is involved in RA‐induced Hox gene expression in a F9 murine embryonic teratocarcinoma cells. To examine the effect of PI3K/Akt signaling on RA‐induced initiation of collinear expression of Hox genes, F9 cells were treated with RA in the presence or absence of PI3K inhibitor LY294002, and time‐course gene expression profiles for all 39 Hox genes located in four different clusters—Hoxa, Hoxb, Hoxc, and Hoxd—were analyzed. Collinear expression of Hoxa and ‐b cluster genes was initiated earlier than that of the ‐c and ‐d clusters upon RA treatment. When LY294002 was applied along with RA, collinear expression induced by RA was delayed, suggesting that the PI3K/Akt signaling pathway somehow regulates RA‐induced collinear expression of Hox genes in F9 cells. The initiation of Hox collinear expression by RA and the delayed expression following LY294002 in F9 cells would provide a good model system to decipher the yet to be answered de novo collinear expression of Hox genes during gastrulation, which make the gastrulating cells to remember their positional address along the AP body axis in the developing embryo.  相似文献   

6.
磷脂酰肌醇-3-激酶 (PI3K) 是一种胞内磷脂酰肌醇激酶,在介导细胞生长、发育、分裂、分化和凋亡等过程中发挥重要作用,因此 PI3K 抑制剂的开发已成为当前抗癌新药研究的热点之一。目前已有多个 PI3K 抑制剂进入临床研究阶段或已上市,其单用或与其他药物联 用的疗效和安全性有待进一步临床验证。综述 PI3K 抑制剂作为抗肿瘤药物的临床研究进展,为其进一步研究与应用提供参考。  相似文献   

7.
PI3K和Akt蛋白在异丙肾上腺素所致大鼠心肌肥厚中的表达   总被引:1,自引:0,他引:1  
目的研究异丙肾上腺素(ISO)致大鼠心肌肥厚中PI3K和Akt在心肌组织中的表达,为探讨心肌肥厚的信号转导机制和逆转心肌肥厚提供形态学资料.方法健康成年SD大鼠20只,随机分为实验组、对照组,每组10只.实验组给予异丙肾上腺素处理.1周后处死大鼠,取心肌组织,常规石蜡切片,HE染色,观察心肌组织的病理变化,测量心肌肥厚指标;免疫组织化学染色和免疫荧光染色,检测p-PI3K和p-Akt的表达及分布.结果实验组大鼠心肌肥厚指标与对照组相比均明显升高;免疫组织化学检测显示,实验组心肌组织p-PI3K和p-Akt蛋白表达面积和平均光密度较对照组高.免疫荧光检测实验组心肌组织p-PI3K和p-Akt蛋白表达较对照组高.结论小剂量持续给予 ISO 能建立大鼠心肌肥厚模型;p-PI3K和p-Akt蛋白表达均与心肌肥厚的发生和发展过程相关,PI3K/Akt信号通路激活,可能是导致心肌肥厚的机制之一.  相似文献   

8.
人类急性白血病(Acute leukemia,AL)是一类造血干细胞异常的克隆性恶性疾病。在临床上,急性白血病由于发病急、病程短等原因使其非常难以治愈。已有研究表明,慢性白血病的发生与真核转译起始因子4B(Eukaryotic initiation factor 4B,eIF4B)的活化密切相关,但是其在急性白血病发生中的作用尚不明确。为了探究eIF4B在急性白血病发生中的作用及其机理,利用PI3K抑制剂LY294002、AKT抑制剂AKTi以及Pim抑制剂SMI-4A特异性地分别阻断JAK/STAT5/Pim和PI3K/AKT/mTOR信号通路,检测这两条信号通路下游共同靶标分子eIF4B的磷酸化水平。研究发现,阻断一条信号通路可明显降低eIF4B的磷酸化水平,而同时阻断两条信号通路能够更为显著地降低eIF4B活性并以一种协同作用的方式诱导细胞发生凋亡。进一步通过检测细胞凋亡和裸鼠致瘤实验,发现干扰eIF4B表达抑制了急性白血病细胞的存活及其在裸鼠体内的肿瘤形成。此外,敲低eIF4B可显著降低抗凋亡蛋白Bcl-2和Bcl-XL的蛋白表达水平。综上所述,在急性白血病细胞中eIF4B的活...  相似文献   

9.
Development of the cerebral cortex is controlled by growth factors among which transforming growth factor beta (TGFβ) and insulin‐like growth factor 1 (IGF1) have a central role. The TGFβ‐ and IGF1‐pathways cross‐talk and share signalling molecules, but in the central nervous system putative points of intersection remain unknown. We studied the biological effects and down‐stream molecules of TGFβ and IGF1 in cells derived from the mouse cerebral cortex at two developmental time points, E13.5 and E16.5. IGF1 induces PI3K, AKT and the mammalian target of rapamycin complexes (mTORC1/mTORC2) primarily in E13.5‐derived cells, resulting in proliferation, survival and neuronal differentiation, but has small impact on E16.5‐derived cells. TGFβ has little effect at E13.5. It does not activate the PI3K‐ and mTOR‐signalling network directly, but requires its activity to mediate neuronal differentiation specifically at E16.5. Our data indicate a central role of mTORC2 in survival, proliferation as well as neuronal differentiation of E16.5‐derived cortical cells. mTORC2 promotes these cellular processes and is under control of PI3K‐p110‐alpha signalling. PI3K‐p110‐beta signalling activates mTORC2 in E16.5‐derived cells but it does not influence cell survival, proliferation and differentiation. This finding indicates that different mTORC2 subtypes may be implicated in cortical development and that these subtypes are under control of different PI3K isoforms.

  相似文献   


10.
Melanoma cell lines are commonly defective for the G2‐phase cell cycle checkpoint that responds to incomplete catenation of the replicated chromosomes. Here, we demonstrate that melanomas defective for this checkpoint response are less sensitive to genotoxic stress, suggesting that the defective cell lines compensated for the checkpoint loss by increasing their ability to cope with DNA damage. We performed an siRNA kinome screen to identify kinases responsible and identified PI3K pathway components. Checkpoint‐defective cell lines were three‐fold more sensitive to small molecule inhibitors of PI3K. The PI3K inhibitor PF‐05212384 promoted apoptosis in the checkpoint‐defective lines, and the increased sensitivity to PI3K inhibition correlated with increased levels of activated Akt. This work demonstrates that increased PI3K pathway activation is a necessary adaption for the continued viability of melanomas with a defective decatenation checkpoint.  相似文献   

11.
Targeted therapies for mutant BRAF metastatic melanoma are effective but not curative due to acquisition of resistance. PI3K signaling is a common mediator of therapy resistance in melanoma; thus, the need for effective PI3K inhibitors is critical. However, testing PI3K inhibitors in adherent cultures is not always reflective of their potential in vivo. To emphasize this, we compared PI3K inhibitors of different specificity in two‐ and three‐dimensional (2D, 3D) melanoma models and show that drug response predictions gain from evaluation using 3D models. Our results in 3D demonstrate the anti‐invasive potential of PI3K inhibitors and that drugs such as PX‐866 have beneficial activity in physiological models alone and when combined with BRAF inhibition. These assays finally help highlight pathway effectors that could be involved in drug response in different environments (e.g. p4E‐BP1). Our findings show the advantages of 3D melanoma models to enhance our understanding of PI3K inhibitors.  相似文献   

12.
L‐selectin and P‐selectin glycoprotein ligand‐1 (PSGL‐1) are adhesion molecules that play critical roles in neutrophil rolling during inflammation and lymphocyte homing. On the other hand they also function as signaling receptors to induce cytoskeleton changes. The present study is to investigate the signaling kinases responsible for the F‐actin changes mediated by L‐selectin and PSGL‐1 during neutrophil rolling on E‐selectin. Western blot analysis demonstrated that PI3K activation, peaking within 5 min, was induced by ligation of L‐selectin and PSGL‐1 with E‐selectin, and that Vav1 (the pivotal downstream effector of PI3K signaling pathway involved in cytoskeleton regulation) was recruited to the membrane and tyrosine‐phosphorylated, depending on PI3K. Furthermore, the F‐actin redistribution and assembly mediated by ligation with E‐selectin were blocked by LY294002, a PI3K specific inhibitor. Additional experiments showed that PI3K activity was involved in neutrophil rolling on E‐selectin. However, Syk/Zap70, the well‐known upstream kinase of PI3K, was not involved in this event. These data suggest that PI3K is required for the F‐actin‐based cytoskeleton changes during neutrophil rolling on E‐selectin, which may consequently regulate the rolling event. J. Cell. Biochem. 110: 910–919, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Insulin has been proposed to be an anabolic agent in bone, but the mechanisms underlying insulin effects on osteoblast differentiation are still not clear. To explore the mechanisms of action of insulin on osteoblast growth and differentiation, human osteoblastic cell line‐MG‐63 was used and stimulated by insulin in the presence or absence of ERK inhibitor PD98059, PI3‐K inhibitor LY294002, or inhibitor PD98059 + LY294002. The results showed that insulin positively regulated the expression of its receptor. Insulin stimulated the proliferation of MG‐63 cells in a time‐ and dose‐dependent manner and blockade of both MAPK and PI3K pathways could inhibit the cell proliferation. In addition, ALP activity, the secretion of type I collagen, OC gene expression, and mineralized nodule formation were increased in the insulin treated group, whereas these indicators were decreased after treatment with blocking agents. However, treatment with PI3‐K inhibitor LY294002 significantly reversed the down‐regulation of Runx2 expression and treatment with ERK inhibitor PD98059 remarkably decreased up‐regulation of Osx and IGF‐1 expression after insulin treatment. Therefore, the data obtained from this study suggested that insulin promoted osteoblast proliferation and differentiation through MAPK and PI3K pathway in MG‐63 cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The PTEN hamartoma tumor syndrome (PHTS) is a complex disorder caused by germline inactivating mutations of the tumor suppressor gene PTEN. Loss of PTEN function leads to unimpeded phosphatidylinositol-3′-kinase (PI3K) activity and PI3K-driven cell division. Individuals with PHTS develop benign hamartomas in various tissues and have an increased risk of developing malignant diseases. Notably, no effective therapy currently exists for this disorder. Using both genetic mouse models and pharmacological approaches, we recently demonstrated that PI3K p110α and p110β isoforms play spatially distinct but concerted roles in the skin that are required for the development and maintenance of PHTS. We also show that treatment with a pan-PI3K inhibitor prevents the development of skin PHTS and reverses advanced-stage skin hamartomas in vivo. Here, we report that genetic ablation of only 3 out of 4 p110 alleles is sufficient to block the development of skin hamartomas resulting from the complete loss of Pten in mice. Similar to our findings in skin, we now also show that mammary gland neoplastic lesions can be prevented or reversed upon PI3K inhibition in our PHTS mouse model. Our data suggest a possible route to chemoprevention using reduced doses of PI3K inhibitors for PTEN-deficient carrier patients.  相似文献   

15.
Hypothalamic neuropeptides, including neuropeptide Y (NPY) and proopiomelanocortin (POMC), have been found to control the appetite‐suppressing effect of amphetamine (AMPH). In this study, we have examined whether dopamine receptor (DAR), phosphatidylinositol 3‐kinase (PI3K) and nuclear factor‐kappaB (NF‐κB) are involved in AMPH's action. We administered AMPH to rats once a day for 4 days and assessed and compared changes in hypothalamic NPY, melanocortin receptor 4 (MC4R), PI3K, pAkt and NF‐κB expression. We found that the inhibition of DAR increased NPY, but decreased MC4R, PI3K and NF‐κB expression, compared with AMPH‐treated rats. Moreover, MC4R, PI3K, pAkt and NF‐κB increased with the maximum response on Day 2, which was consistent with the response of feeding behavior, but was opposite to the expression of NPY. Furthermore, we found that the intracerebroventricular infusion of the PI3K inhibitor or NF‐κB antisense could attenuate AMPH‐induced anorexia, and partially reverse the expression of NPY, MC4R, PI3K, Akt and NF‐κB back toward a normal level. We, therefore, suggest that DAR–PI3K–NF‐κB signaling in the hypothalamus plays functional roles in the modulation of NPY and POMC neurotransmissions and in the control of AMPH‐evoked appetite suppression.  相似文献   

16.
Inhibitors of PI3‐K/Akt are currently being assessed clinically in patients with advanced RCC. Identification of therapeutic strategies that might enhance the efficacy of PI3‐K/Akt inhibitors is therefore of great interest. As PI3‐K inhibition would be expected to have many pro‐apoptotic effects, we hypothesized that there may be unique synergy between PI3‐K inhibitors and BH3‐mimetics. Towards this end, we assessed the combination of the PI3K inhibitor LY 294002 and the Bcl‐2 family inhibitor ABT‐737 in RCC cell lines. We found that the combinatorial treatment with these agents led to a significant increase in PARP cleavage and cell death in all RCC cell lines. The synergized cell death was correlated with decreased levels of Mcl‐1 and XIAP, and increased levels in Bim, and appears critically dependent upon the activation of caspase 3 and 8. The enhanced lethality observed with the combination also appears dependent upon the regulation of XIAP, Mcl‐1 and Bim levels. Our results suggest that the combination of PI3‐K inhibitors with BH3‐mimetics may be a viable therapeutic strategy in RCC.  相似文献   

17.
Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α‐lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long‐term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α‐lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α‐lipoic acid, providing a promising way in the prevention and treatment of long‐term cognitive impairment induced by sevoflurane general anesthesia. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.  相似文献   

20.
Hypoxia could stimulate proliferation of mesenchymal stem cells (MSCs) under certain conditions. This study determined angiotensin II mechanisms and PI3K/AKT pathway in hypoxia‐induced proliferation of MSCs. Hypoxia (3% oxygen) induced cellular proliferation in mouse MSCs and upregulated endogenous angiotensin II and angiotensin‐converting enzyme in the cell culture and expression of AT1 receptors. The expressions of Sox2, not Oct4 and Rex1, were significantly increased by the hypoxia. The blockade of AT1 receptors, not AT2 receptors, depressed hypoxia induced the proliferative effects. Both hypoxia and exogenous angiotensin II activated p‐AKT. Moreover, AT1 receptor inhibitor blocked the effects of hypoxia‐mediated p‐AKT upregulation. The data demonstrated that the hypoxia at 3% oxygen level could induce mouse MSC proliferation, probably as a result of the activation of PI3K signalling pathways via AT1 receptors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号