共查询到20条相似文献,搜索用时 15 毫秒
1.
Wen-Jie Luo Xi Tian Wen-Hao Xu Yuan-Yuan Qu Wen-Kai Zhu Jie Wu Chun-Guang Ma Hai-Liang Zhang Ding-Wei Ye Yi-Ping Zhu 《Journal of cellular and molecular medicine》2021,25(9):4326-4339
Bladder cancer (BLCA) is one of the most common urological cancer with increasing cases and deaths every year. In the present study, we aim to construct an immune-related prognostic lncRNA signature (IRPLS) in bladder cancer (BLCA) patients and explore its immunogenomic implications in pan-cancers. First, the immune-related differentially expressed lncRNAs (IRDELs) were identified by ‘limma’ R package and the score of IRPLS in every patient were evaluated by Cox regression. The dysregulation of IRDELs expression between cancer and para-cancer normal tissues was validated through RT-qPCR. Then, we further explore the biological functions of a novel lncRNA from IRPLS, RP11-89 in BLCA using CCK8 assay, Transwell assay and Apoptosis analysis, which indicated that RP11-89 was able to promote cell proliferation and invasive capacity while inhibits cell apoptosis in BLCA. In addition, we performed bioinformatic methods and RIP to investigate and validate the RP11-89/miR-27a-3p/PPARγ pathway in order to explore the mechanism. Next, CIBERSORT and ESTIMATE algorithm were used to evaluate abundance of tumour-infiltrating immune cells and scores of tumour environment elements in BLCA with different level of IRPLS risk scores. Finally, multiple bioinformatic methods were performed to show us the immune landscape of these four lncRNAs for pan-cancers. In conclusion, this study first constructed an immune-related prognostic lncRNA signature, which consists of RP11-89, PSORS1C3, LINC02672 and MIR100HG and might shed lights on novel targets for individualized immunotherapy for BLCA patients. 相似文献
2.
3.
Yongping Zhou Ting Shan Wenzhou Ding Zhiyuan Hua Yijun Shen Zhihua Lu Bo Chen Tu Dai 《Journal of cellular physiology》2018,233(8):5805-5814
4.
5.
Qiang Zhen Li‐na Gao Ren‐feng Wang Wei‐wei Chu Ya‐xiao Zhang Xiao‐jian Zhao Bao‐lei Lv Jia‐bao Liu 《Cell biochemistry and function》2018,36(1):27-33
Oesophageal cancer (OC) is one of the most fatal malignancies in the world, and chemoresistance restricts the therapeutic outcome of OC. Long noncoding RNA (lncRNA) was reported to play roles in multiple cancer types. Yet, the function of lncRNA in chemoresistance of OC has not been reported. A lncRNA gene, PCAT‐1, showed higher expression in OC tissues, especially higher in secondary OC compared with normal mucosa tissues. Overexpression of PCAT‐1 increased the proliferation rate and growth of OC cells. Inhibition of PCAT‐1 decreased proliferation and growth of OC cells, and increased cisplatin chemosensitivity. In a mouse OC xenograft model, PCAT‐1 inhibition repressed OC growth in vivo. Therefore, PCAT‐1 may potentially serve as a therapeutic target for treating OC. PCAT‐1 promotes development of OC and represses the chemoresistance of OC to cisplatin, and silencing of PCAT‐1 may be a therapeutic strategy for treating OC. 相似文献
6.
Gastric cancer is a common malignancy with high mortality. Long noncoding RNA (lncRNA) zinc finger antisense (ZFAS)1 is upregulated in gastric cancer specimens compared with the para-carcinoma tissues. The silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion and epithelial-mesenchymal transition (EMT), and enhanced the sensitivity to cis-platinum or paclitaxel in SGC7901 cells, as evidenced by the expression changes of proliferating cell nuclear antigen, Cyclin D1, Cyclin E, Cyclin B1, E-cadherin, N-cadherin, vimentin, matrix metalloproteinase (MMP)-2 and MMP-14. The ZFAS1 also activated the Wnt/β-catenin signaling. Subsequently, the ZFAS1 knockdown-induced the inhibition of migration, invasion, EMT and resistance to chemotherapeutic reagens was reversed by the overexpression of β-catenin. In summary, the silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion, EMT and chemotherapeutic tolerance by blocking the Wnt/β-catenin signaling in gastric cancer cells. 相似文献
7.
Jing Zhao Yongchao Liu Wenhong Zhang Zhongwen Zhou Jing Wu Peng Cui Ying Zhang Guangjian Huang 《Cell cycle (Georgetown, Tex.)》2015,14(19):3112-3123
Gastric cancer remains a serious threat to public health with high incidence and mortality worldwide. Accumulating evidence demonstrates that long non-coding RNAs (lncRNAs) play important roles in regulating gene expression and are involved in various pathological processes, including gastric cancer. To investigate the possible role of dysregulated lncRNAs in gastric cancer development, we performed lncRNA microarray and identified 3141 significantly differentially expressed lncRNAs in gastric cancer tissues. Next, some of deregulated lncRNAs were validated among about 60 paired gastric cancer specimens such as Linc00261, DKFZP434K028, RPL34-AS1, H19, HOTAIR and Linc00152. Our results found that the decline of DKFZP434K028 and RPL34-AS1, and the increased expression of Linc00152 positively correlated with larger tumor size. The high expression levels of HOTAIR were associated with lymphatic metastasis and poor differentiation. Since the biological roles of Linc00152 are largely unknown in gastric cancer pathogenesis, we assessed its functions by silencing its up-regulation in gastric cancer cells. We found that Linc00152 knockdown could inhibit cell proliferation and colony formation, promote cell cycle arrest at G1 phase, trigger late apoptosis, reduce the epithelial to mesenchymal transition (EMT) program, and suppress cell migration and invasion. Taken together, we delineate the gastric cancer lncRNA signature and demonstrate the oncogenic functions of Linc00152. These findings may have implications for developing lncRNA-based biomarkers for diagnosis and therapeutics for gastric cancer. 相似文献
8.
Huiquan Liu Ting Zhou Bangyan Wang Lu Li Dawei Ye Shiying Yu 《Journal of cellular biochemistry》2018,119(2):1679-1688
9.
Accumulating evidence from genome‐wide analysis and functional studies has begun to unveil the important role of long non‐coding RNAs (lncRNAs) in cancer development. The lncRNA SPRY4‐IT1 is derived from an intron of SPRY4 gene and was originally reported to be upregulated in melanoma in which it functioned as an oncogene. Since this discovery, an increasing number of studies have investigated the expression and function of SPRY4‐IT1 in human cancers. Aberrant expression of SPRY4‐IT1 has now been documented in different cancer types, including osteosarcoma, breast, renal, oesophageal and prostate cancers. However, its deregulation and function in lung and gastric cancers remain controversial. Pertinent to clinical practice, SPRY4‐IT1 expression has been shown to predict survival of cancer patients. In this review, we summarize recent evidence concerning SPRY4‐IT1 deregulation and the associated mechanisms in human cancers. We also discuss the potential clinical utilization of this lncRNA as a diagnostic and prognostic biomarker for cancer patients. 相似文献
10.
Hong Zhang Yuechang Cai Li Zheng Zhanlei Zhang Xiaofeng Lin Ningyi Jiang 《Journal of cellular physiology》2018,233(10):6638-6648
11.
12.
Jia Yao Feng Xu Danhua Zhang Wenjun Yi Xianyu Chen Gannong Chen Enxiang Zhou 《Journal of cellular biochemistry》2018,119(1):680-690
P73 antisense RNA 1T (TP73‐AS1 or PDAM) is a long non‐coding RNA, which can regulate apoptosis through regulation of p53 signaling‐related anti‐apoptotic genes. An abnormal change of TP73‐AS1 expression was noticed in cancers. The effects of TP73‐AS1 in breast cancer (BC) growth and the underlying mechanism remain unclear so far. In the present study, the effect of TP73‐AS1 in BC cell lines and clinical tumor samples was detected so as to reveal its role and function. In the present study, TP73‐AS1 was specifically upregulated in BC tissues and BC cell lines and was correlated to a poorer prognosis in patients with BC. TP73‐AS1 knocking down suppressed human BC cell proliferation in vitro through regulation of TFAM. In our previous study, we demonstrated that miR‐200a inhibits BC cell proliferation through targeting TFAM; here we revealed that TP73‐AS1 could regulate miR‐200a through direct targeting. Moreover, TP73‐AS1 might compete with TFAM for miR‐200a binding thus to promote TFAM expression. Data from the present study revealed that TP73‐AS1 promoted BC cell proliferation through acting as a competing endogenous RNA (ceRNA) by sponging miR‐200a. In conclusion, we regarded TP73‐AS1 as an oncogenic lncRNA promoting BC cell proliferation and a potential target for human BC treatment. 相似文献
13.
14.
Soudeh Ghafouri-Fard Mir Davood Omrani Mohammad Taheri 《Journal of cellular physiology》2020,235(2):818-835
Recent studies have verified the contribution of several long noncoding RNAs (lncRNAs) in the carcinogenesis. Among the highly acknowledged lncRNAs is the human homolog of the plasmacytoma variant translocation gene, which is called PVT1. PVT1 resides near Myc oncogene and regulates the oncogenic process through modulation of several signaling pathways, such as TGF-β, Wnt/ β-catenin, PI3K/AKT, and mTOR pathways. This lncRNA has a circular form as well. Expression analyses and functional studies have appraised the oncogenic roles of PVT1 and circPVT1. Experiments in several cancer cell lines have shown that PVT1 silencing suppresses cancer cell proliferation, whereas its overexpression has the opposite effect. Its silencing has led to the accumulation of cells in the G0/G1 phase and diminished the number of cells in the S phase. Moreover, genome-wide association studies have signified the role of single nucleotide polymorphisms of this lncRNA in conferring risk of lymphoma in different populations. In the current study, we have summarized recent data about the role of PVT1 and circPVT1 in the carcinogenesis process. 相似文献
15.
16.
17.
18.
19.
Ting Zhu Shu An Man‐Ting Choy Junhao Zhou Shanshan Wu Shihua Liu Bangdong Liu Zhicheng Yao Xun Zhu Jueheng Wu Zhenjian He 《Journal of cellular and molecular medicine》2019,23(3):1852-1864
Long noncoding RNAs (lncRNAs) are involved in the pathology of various tumours, including non‐small cell lung cancer (NSCLC). However, the underlying molecular mechanisms of their specific association with NSCLC have not been fully elucidated. Here, we report that a cytoplasmic lncRNA, DUXAP9‐206 is overexpressed in NSCLC cells and closely related to NSCLC clinical features and poor patient survival. We reveal that DUXAP9‐206 induced NSCLC cell proliferation and metastasis by directly interacting with Cbl‐b, an E3 ubiquitin ligase, and reducing the degradation of epidermal growth factor receptor (EGFR) and thereby augmenting EGFR signaling in NSCLC. Notably, correlations between DUXAP9‐206 and activated EGFR signaling were also validated in NSCLC patient specimens. Collectively, our findings reveal the novel molecular mechanisms of DUXAP9‐206 in mediating the progression of NSCLC and DUXAP9‐206 may serve as a potential target for NSCLC therapy. 相似文献
20.
Yiwei Wang Ting Huang Xiao Sun Yudong Wang 《Journal of cellular biochemistry》2019,120(11):18845-18853
Endometrial cancer is one of the most common gynecological malignant tumors. The roles of competing endogenous RNAs (ceRNAs) in this disease, however, remain unclear. In this study, we constructed a ceRNA network to reveal the core ceRNAs in endometrial cancer. Differentially expressed genes were summarized from The Cancer Genome Atlas database, whereupon 140 genes were identified for building the network. Further correlation, survival, and enrichment analyses suggested that these genes may help towards elucidating the molecular mechanisms of endometrial cancer. After validation of the findings with the GSE17025 data set, LINC00958, microRNA-761, and DOLPP1 were highlighted as the critical genes in the ceRNA network. Our work suggests that LINC00958 may regulate DOLPP1 by “sponging” miR-761 in endometrial cancer. 相似文献