共查询到20条相似文献,搜索用时 15 毫秒
1.
椎间盘退变是腰痛发生的主要原因,严重影响了人们的生活和工作。尽管具体发病机制尚不明确,但近年来其相关动物模型的研究有了很大的进步。造模方法包括结构损伤、应力改变及基因敲除等,本文综述并讨论了这些方法的优缺点和应用方向,以期为后续的研究奠定理论基础。 相似文献
2.
Dasheng Lin Paolo Alberton Manuel Delgado Caceres Carina Prein Hauke Clausen‐Schaumann Jian Dong Attila Aszodi Chisa Shukunami James C Iatridis Denitsa Docheva 《Aging cell》2020,19(3)
The intervertebral disc (IVD) degeneration is thought to be closely related to ingrowth of new blood vessels. However, the impact of anti‐angiogenic factors in the maintenance of IVD avascularity remains unknown. Tenomodulin (Tnmd) is a tendon/ligament‐specific marker and anti‐angiogenic factor with abundant expression in the IVD. It is still unclear whether Tnmd contributes to the maintenance of IVD homeostasis, acting to inhibit vascular ingrowth into this normally avascular tissue. Herein, we investigated whether IVD degeneration could be induced spontaneously by the absence of Tnmd. Our results showed that Tnmd was expressed in an age‐dependent manner primarily in the outer annulus fibrous (OAF) and it was downregulated at 6 months of age corresponding to the early IVD degeneration stage in mice. Tnmd knockout (Tnmd?/?) mice exhibited more rapid progression of age‐related IVD degeneration. These signs include smaller collagen fibril diameter, markedly lower compressive stiffness, reduced multiple IVD‐ and tendon/ligament‐related gene expression, induced angiogenesis, and macrophage infiltration in OAF, as well as more hypertrophic‐like chondrocytes in the nucleus pulposus. In addition, Tnmd and chondromodulin I (Chm1, the only homologous gene to Tnmd) double knockout (Tnmd?/?Chm1?/?) mice displayed not only accelerated IVD degeneration, but also ectopic bone formation of IVD. Lastly, the absence of Tnmd in OAF‐derived cells promoted p65 and matrix metalloproteinases upregulation, and increased migratory capacity of human umbilical vein endothelial cells. In sum, our data provide clear evidences that Tnmd acts as an angiogenic inhibitor in the IVD homeostasis and protects against age‐related IVD degeneration. Targeting Tnmd may represent a novel therapeutic strategy for attenuating age‐related IVD degeneration. 相似文献
3.
Wilson C. W. Chan Tiffany Y. K. Au Vivian Tam Kathryn S. E. Cheah Danny Chan 《Birth defects research. Part C, Embryo today : reviews》2014,102(1):83-100
The intervertebral disc (IVD) is a complex fibrocartilaginous structure located between the vertebral bodies that allows for movement and acts as a shock absorber in our spine for daily activities. It is composed of three components: the nucleus pulposus (NP), annulus fibrosus, and cartilaginous endplate. The characteristics of these cells are different, as they produce specific extracellular matrix (ECM) for tissue function and the niche in supporting the differentiation status of the cells in the IVD. Furthermore, cell heterogeneities exist in each compartment. The cells and the supporting ECM change as we age, leading to degenerative outcomes that often lead to pathological symptoms such as back pain and sciatica. There are speculations as to the potential of cell therapy or the use of tissue engineering as treatments. However, the nature of the cells present in the IVD that support tissue function is not clear. This review looks at the origin of cells in the making of an IVD, from the earliest stages of embryogenesis in the formation of the notochord, and its role as a signaling center, guiding the formation of spine, and in its journey to become the NP at the center of the IVD. While our current understanding of the molecular signatures of IVD cells is still limited, the field is moving fast and the potential is enormous as we begin to understand the progenitor and differentiated cells present, their molecular signatures, and signals that we could harness in directing the appropriate in vitro and in vivo cellular responses in our quest to regain or maintain a healthy IVD as we age. Birth Defects Research (Part C) 102:83–100, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
4.
Intervertebral disc degeneration (IDD) is induced by multiple factors including increased apoptosis, decreased survival, and reduced extracellular matrix (ECM) synthesis in the nucleus pulposus (NP) cells. The tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is the only known lipid phosphatase counteracting the PI3K/AKT pathway. Loss of PTEN leads to activated PI3K/AKT signaling, which plays a key role in a variety of cancers. However, the role of PTEN/PI3K/AKT signaling nexus in IDD remains unknown. Here, we report that PTEN is overexpressed in degenerative NP, which correlates with inactivated AKT. Using the PTEN knockdown approach by lentivirus‐mediated short interfering RNA gene transfer technique, we report that PTEN decreases survival but induces apoptosis and senescence of NP cells. PTEN also inhibits expression and production of ECM components including collagen II, aggrecan, and proteoglycan. Furthermore, PTEN modulates the expression of ECM regulatory molecules SOX‐9 and matrix metalloproteinase‐3 (MMP‐3). Using small‐molecule AKT inhibitor GDC‐0068, we confirm that PTEN regulates NP cell behaviors through its direct targeting of PI3K/AKT. These findings demonstrate for the first time that PTEN/PI3K/AKT signaling axis plays an important role in the pathogenesis of IDD. Targeting PTEN using gene therapy may represent a promising therapeutic approach against disc degenerative diseases. 相似文献
5.
Zhonghui Chen Weibing Zhang Nu Zhang Yan Zhou Geliang Hu Mingdi Xue Junhua Liu Yaming Li 《Journal of cellular and molecular medicine》2019,23(9):6368-6377
It is obvious that epigenetic processes influence the evolution of intervertebral disc degeneration (IDD). However, its molecular mechanisms are poorly understood. Therefore, we tested the hypothesis that IGFBP5, a potential regulator of IDD, modulates IDD via the ERK signalling pathway. We showed that IGFBP5 mRNA was significantly down‐regulated in degenerative nucleus pulposus (NP) tissues. IGFBP5 was shown to significantly promote NP cell proliferation and inhibit apoptosis in vitro, which was confirmed by MTT, flow cytometry and colony formation assays. Furthermore, IGFBP5 was shown to exert its effects by inhibiting the ERK signalling pathway. The effects induced by IGFBP5 overexpression on NP cells were similar to those induced by treatment with an ERK pathway inhibitor (PD98059). Moreover, qRT‐PCR and Western blot analyses were performed to examine the levels of apoptosis‐related factors, including Bax, caspase‐3 and Bcl2. The silencing of IGFBP5 up‐regulated the levels of Bax and caspase‐3 and down‐regulated the level of Bcl2, thereby contributing to the development of human IDD. Furthermore, these results were confirmed in vivo using an IDD rat model, which showed that the induction of Igfbp5 mRNA expression abrogated the effects of IGFBP5 silencing on intervertebral discs. Overall, our findings elucidate the role of IGFBP5 in the pathogenesis of IDD and provide a potential novel therapeutic target for IDD. 相似文献
6.
7.
Ping Shang Qian Tang Zhichao Hu Shiyuan Huang Yuezheng Hu Jianhong Zhu Haixiao Liu 《Journal of cellular and molecular medicine》2020,24(6):3701-3711
As a chronic musculoskeletal degeneration disease, intervertebral disc degeneration (IVDD) has been identified as a crucial cause for low back pain. This condition has a prevalence of 80% among adults without effective preventative therapy. Procyanidin B3 (Pro-B3) is a procyanidin dimer, which is widely present in the human diet and has multiple functions, such as preventing inflammation. But the inhibiting effect of Pro-B3 in IVDD development is still no known. Thus, our study aimed to demonstrate the therapeutical effect of Pro-B3 in IVDD and explain the underlying mechanism. In vitro studies, human nucleus pulposus (NP) cells were isolated and exposed in lipopolysaccharide (LPS) to simulate IVDD development. Pro-B3 pre-treatment inhibited LPS-induced production of inflammation correlated factors such as tumour necrosis factor α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2) and Nitric oxide (NO). On the other hand, LPS-medicated extracellular matrix (ECM) breakdown was blocked in Pro-B3 treated NP cells. Additionally, Pro-B3 treatment blocked the activation of NF-κB/toll-like receptor 4 pathway in LPS-exposed NP cells. Mechanistically, Pro-B3 could occupy MD-2's hydrophobic pocket exhibiting high affinity for LPS to intervene LPS/TLR4/MD-2 complex formation. In vivo, Pro-B3 treatment prevented the loss of gelatin NP cells and structural damage of annulus fibrosus in rat IVDD model. In brief, Pro-B3 is considered to be a treatment agent for IVDD. 相似文献
8.
Jingjie Wang Xiaoyan Liu Bing Sun Wei Du Yanping Zheng Yuanliang Sun 《Journal of cellular biochemistry》2019,120(7):11900-11907
Intervertebral disc degeneration (IDD), a common global health issue, is a major cause for low back pain (LBP). Given the complex etiology of IDD, micro RNA (miRNA) recently has been demonstrated to play essential roles in the progression of IDD. Therefore, this study aims to investigate functions of the miR-154, which is well-documented in a series of cell activities, IDD, and other relevant mechanisms. Lumbar nucleus pulposus (NP) samples were collected from patients with IDD and the control group. After solexa sequencing and bioinformatical analysis, the results showed that miR-154 was increased in NP cells of patients with IDD. Inhibition of miR-154 increased type II collagen and aggrecan and decreased mRNA expressions of collagenase-3 (MMP13) and aggrecanase-1 (ADAMTS4), whereas overexpression of miR-154 reversed such effects in NP cells. In addition, the luciferase reporter assay revealed that fibroblast growth factor 14 (FGF14) is a direct target of miR-154 and that the overexpression of FGF14 leads to similar effects as inhibition of miR-154 did. In conclusion, the results suggested that miR-154 participates in the development of IDD and its effects are mediated via targeting FGF14. Thus, miR-154 may be thought as a potential etiological factor for IDD and may provide insights into a therapeutic target to treat IDD. 相似文献
9.
Feng Cheng Chenggui Wang Yufei Ji Biao Yang Jiawei Shu Kesi Shi Lulu Wang Shaoke Wang Yuang Zhang Xianpeng Huang Xiaopeng Zhou Kaishun Xia Chengzhen Liang Qixin Chen Fangcai Li 《Aging cell》2022,21(4)
Rejuvenation of nucleus pulposus cells (NPCs) in degenerative discs can reverse intervertebral disc degeneration (IDD). Partial reprogramming is used to rejuvenate aging cells and ameliorate progression of aging tissue to avoiding formation of tumors by classical reprogramming. Understanding the effects and potential mechanisms of partial reprogramming in degenerative discs provides insights for development of new therapies for IDD treatment. The findings of the present study show that partial reprogramming through short‐term cyclic expression of Oct‐3/4, Sox2, Klf4, and c‐Myc (OSKM) inhibits progression of IDD, and significantly reduces senescence related phenotypes in aging NPCs. Mechanistically, short‐term induction of OSKM in aging NPCs activates energy metabolism as a “energy switch” by upregulating expression of Hexokinase 2 (HK2) ultimately promoting redistribution of cytoskeleton and restoring the aging state in aging NPCs. These findings indicate that partial reprogramming through short‐term induction of OSKM has high therapeutic potential in the treatment of IDD. 相似文献
10.
Xinyu Dou Yunlong Ma Qipeng Luo Chunyu Song Meijuan Liu Xiao Liu Donglin Jia Shuiqing Li Xiaoguang Liu 《Journal of cellular and molecular medicine》2023,27(16):2340-2353
Ferroptosis, a novel type of cell death mediated by the iron-dependent lipid peroxidation, contributes to the pathogenesis of the intervertebral disc degeneration (IDD). Increasing evidence demonstrated that melatonin (MLT) displayed the therapeutic potential to prevent the development of IDD. Current mechanistic study aims to explore whether the downregulation of ferroptosis contributes to the therapeutic capability of MLT in IDD. Current studies demonstrated that conditioned medium (CM) from the lipopolysaccharide (LPS)-stimulated macrophages caused a series of changes about IDD, including increased intracellular oxidative stress (increased reactive oxygen species and malondialdehyde levels, but decreased glutathione levels), upregulated expression of inflammation-associated factors (IL-1β, COX-2 and iNOS), increased expression of key matrix catabolic molecules (MMP-13, ADAMTS4 and ADAMTS5), reduced the expression of major matrix anabolic molecules (COL2A1 and ACAN), and increased ferroptosis (downregulated GPX4 and SLC7A11 levels, but upregulated ACSL4 and LPCAT3 levels) in nucleus pulposus (NP) cells. MLT could alleviate CM-induced NP cell injury in a dose-dependent manner. Moreover, the data substantiated that intercellular iron overload was involved in CM-induced ferroptosis in NP cells, and MLT treatment alleviated intercellular iron overload and protected NP cells against ferroptosis, and those protective effects of MLT in NP cells further attenuated with erastin and enhanced with ferrostatin-1(Fer-1). This study demonstrated that CM from the LPS-stimulated RAW264.7 macrophages promoted the NP cell injury. MLT alleviated the CM-induced NP cell injury partly through inhibiting ferroptosis. The findings support the role of ferroptosis in the pathogenesis of IDD, and suggest that MLT may serve as a potential therapeutic approach for clinical treatment of IDD. 相似文献
11.
12.
Mesenchymal stem cells deliver exogenous miR‐21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration 下载免费PDF全文
Ying Hu Kai Zhang Xiaojiang Sun Changqing Zhao Hua Li Yan Michael Li Jie Zhao 《Journal of cellular and molecular medicine》2018,22(1):261-276
Although mesenchymal stem cells (MSCs) transplantation into the IVD (intervertebral disc) may be beneficial in inhibiting apoptosis of nucleus pulposus cells (NPCs) and alleviating IVD degeneration, the underlying mechanism of this therapeutic process has not been fully explained. The purpose of this study was to explore the protective effect of MSC‐derived exosomes (MSC‐exosomes) on NPC apoptosis and IVD degeneration and investigate the regulatory effect of miRNAs in MSC‐exosomes and associated mechanisms for NPC apoptosis. MSC‐exosomes were isolated from MSC medium, and its anti‐apoptotic effect was assessed in a cell and rat model. The down‐regulated miRNAs in apoptotic NPCs were identified, and their contents in MSC‐exosomes were detected. The target genes of eligible miRNAs and possible downstream pathway were investigated. Purified MSC‐exosomes were taken up by NPCs and suppressed NPC apoptosis. The levels of miR‐21 were down‐regulated in apoptotic NPCs while MSC‐exosomes were enriched in miR‐21. The exosomal miR‐21 could be transferred into NPCs and alleviated TNF‐α induced NPC apoptosis by targeting phosphatase and tensin homolog (PTEN) through phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Intradiscal injection of MSC‐exosomes alleviated the NPC apoptosis and IVD degeneration in the rat model. In conclusion, MSC‐derived exosomes prevent NPCs from apoptotic process and alleviate IVD degeneration, at least partly, via miR‐21 contained in exosomes. Exosomal miR‐21 restrains PTEN and thus activates PI3K/Akt pathway in apoptotic NPCs. Our work confers a promising therapeutic strategy for IVD degeneration. 相似文献
13.
Matrix metalloproteinases (MMPs) degrade components of the extracellular matrix of the disc, but the presence of MMP-19 has not been explored. In other tissues, MMP-19 is known to act in proteolysis of the insulin-like growth factor (IGF) binding protein-3, thereby exposing this protein to make it available to influence cell behavior. MMP-19 also has been shown to inhibit capillary-like formation and thus play a role in the avascular nature of the disc. Using immunohistochemistry, normal discs from six subjects aged newborn through 10 years and 20 disc specimens from control donors or surgical patients aged 15-76 (mean age 40.2 years) were examined for immunolocalization of MMP-19; six Thompson grade I discs, five Thompson grade II, eight Thompson grade III, five Thompson grade IV, and one Thompson grade V discs were analyzed. The results indicate that in discs from young subjects, MMP-19 was uniformly localized in the outer annulus. In discs from adult donors and surgical patients, outer and inner annulus cells only occasionally showed MMP-19 localization. The greatest expression of MMP-19 was observed in young discs, and little expression was seen in older or degenerating discs. Because MMP-19 has been shown to regulate IGF-mediated proliferation in other tissues, its decline in the aging/degenerating disc may contribute to the age-related decrease in disc cell numbers. 相似文献
14.
Intervertebral disc (IVD) degeneration is strongly associated with chronic low back pain, one of the most common causes of morbidity in the West. While normal healthy IVD is avascular, angiogenesis is a constant feature of IVD degeneration and has been shown to be associated with in-growth of nerves. Connective tissue growth factor (CTGF) plays a pivotal role in angiogenesis. To investigate the expression of CTGF in both normal and degenerated IVD, 21 IVDs were obtained from patients at surgery or postmortem examination and grouped according to the severity of histological degeneration. The immunohistochemical expression of CTGF was correlated with the degree of degeneration. CD31 immunohistochemistry was used to correlate IVD degeneration with vasculature. Our results showed that CTGF is expressed in non-degenerated and degenerated human IVDs and increased expression of CTGF is associated with degenerated discs, particularly within areas of neovascularization. We suggest that CTGF may play a role in angiogenesis in the human degenerated IVD. 相似文献
15.
P53 is an apoptosis marker which is involved in determining nucleus pulposus (NP) cell fate. Little is known about P53 interaction with N-Myc downstream-regulated gene 2 (NDRG2) in intervertebral disc degeneration (IVDD). Here, we studied the role of the P53-NDRG2 axis in IVDD. We found that NDRG2 was expressed in NP tissue obtained from patients with IVDD. The level of NDRG2 was positively related to the severity of IVDD, as determined by Pfirrmann grading. Subsequently, we overexpressed NDRG2 in human NP cells by adenoviral transfection and studied the effects of increased levels of NDRG2 on the viability and apoptosis of these cells. NDRG2 overexpression induced NP cell apoptosis and reduced viability in NP cells obtained from patient with IVDD. We also found that the level of P53 was elevated in NP cells from patients with IVDD and treatment with exogenous P53 upregulated NDRG2 in NP cells. Last, IVDD model was established in P53 knockout mice and the pathological changes in the intervertebral discs and NDRG2 expression were examined. P53 knockout can reduce the damage of NP tissues after IVDD surgery to some extent. Restoration of NDRG2 antagonized the effect of P53 knockout on IVDD. Collectively, this study suggests that elevated P53 in NP cells stimulates apoptosis of the cells by upregulating NDRG2 expression, thereby exacerbating IVDD. 相似文献
16.
The sand rat, a member of the gerbil family, is a valuable small animal model in which intervertebral disc degeneration occurs spontaneously as the animal ages. Radiographic features of cervical and lumbar degeneration resemble those in human spines. We conducted a retrospective analysis of spines of 140 animals 3?41 months old focusing specifically on the presence of annular tears that are not visible by radiography and have not been described previously in the sand rat disc. During degeneration of the nucleus pulposus, notochordal cell death occurs and granular material, which stains with Alcian blue for proteoglycans, accumulates. Lamellar architecture also deteriorates and annular tears occur that are morphologically similar to the concentric, radiating and transdiscal annular tears in human discs. These tears contain granular material that provides a “marker” that can be used to distinguish the annular tears from artefactual separations during sectioning. We observed lamellar degeneration and separation in the annulus fibrosus at 4 months with associated tears that contained granular material in the nucleus. Tears that contained granular material and displacement of the degenerating nucleus were common in cervical and lumbar discs of animals older than 9 months; some specimens showed tears at 4 and 5 months. With advanced degeneration, granular globules were displaced dorsally adjacent to and into the spinal cord area and also ventrally into regions where osteophytes formed. We present morphologic data that expand the utility of this rodent model of spontaneous age-related disc degeneration and provide novel information on annular tears and disc degeneration. 相似文献
17.
miR-129-5p is implicated in many diseases, such as laryngeal cancer and breast cancer. In this study, we studied the mechanism underlying the role of BMP2 in intervertebral disc degeneration (IDD). We used a luciferase assay system to determine the relationship between BMP2 and miR-129-5 expression. In addition, Western blot and real-time PCR were used to confirm the regulatory relationship between miR-129-5p and its targets, while flow cytometry was used to evaluate the effect of miR-129-5p on the apoptosis of neural progenitor cells (NPCs). BMP2 was confirmed as a direct target of miR-129-5p. Furthermore, the expression of miR-129 was downregulated along with upregulated BMP2 expression in IDD patients. Meanwhile, BMP2 was validated as the target of miR-129-5p in cells transfected with miR-129-5p and BMP2 siRNA. Also, compared with NPCs transfected with blank/scramble controls or miR-129-5p inhibitors, the NPCs treated with miR-129-5p mimics or BMP2 siRNA exhibited evidently elevated viability and inhibited apoptosis. The data demonstrated that miR-129-5p was poorly expressed in IDD patients, and the dysregulation of miR-129-5p might contribute to the development of IDD by targeting BMP2 expression. 相似文献
18.
Kai Chen Dajiang Wu Xiaodong Zhu Haijian Ni Xianzhao Wei Ningfang Mao Yang Xie Yunfei Niu Ming Li 《Genetics and molecular biology》2013,36(3):448-454
In this study, we used microarray analysis to investigate the biogenesis and progression of intervertebral disc degeneration. The gene expression profiles of 37 disc tissue samples obtained from patients with herniated discs and degenerative disc disease collected by the National Cancer Institute Cooperative Tissue Network were analyzed. Differentially expressed genes between more and less degenerated discs were identified by significant analysis of microarray. A total of 555 genes were significantly overexpressed in more degenerated discs with a false discovery rate of < 3%. Functional annotation showed that these genes were significantly associated with membrane-bound vesicles, calcium ion binding and extracellular matrix. Protein-protein interaction analysis showed that these genes, including previously reported genes such as fibronectin, COL2A1 and β-catenin, may play key roles in disc degeneration. Unsupervised clustering indicated that the widely used morphology-based Thompson grading system was only marginally associated with the molecular classification of intervertebral disc degeneration. These findings indicate that detailed, systematic gene analysis may be a useful way of studying the biology of intervertebral disc degeneration. 相似文献
19.
20.
Yunzhi Guan Chi Sun Fei Zou Hongli Wang Feizhou Lu Jian Song Siyang Liu Xinlei Xia Jianyuan Jiang Xiaosheng Ma 《Journal of cellular and molecular medicine》2021,25(13):6006-6017
To investigate the regulatory effect of carbohydrate sulfotransferase 3 (CHST3) in cartilage endplate-derived stem cells (CESCs) on the molecular mechanism of intervertebral disc degeneration after nucleus pulposus repair in rats. We performed GO and KEGG analysis of GSE15227 database to select the differential genes CHST3 and CSPG4 in grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration, IHC and WB to detect the protein profile of CHST3 and CSPG4, Co-IP for the interaction between CHST3 and CSPG4. Then, immunofluorescence was applied to measure the level of CD90 and CD105, and flow cytometry indicated the level of CD73, CD90 and CD105 in CESCs. Next, Alizarin red staining, Alcian blue staining and TEM were performed to evaluate the effects of CESCs into osteoblasts and chondroblasts, respectively, CCK8 for the cell proliferation of osteoblasts and chondroblasts after induction for different times; cell cycle of osteoblasts or chondroblasts was measured by flow cytometry after induction, and WB for the measurement of specific biomarkers of OC and RUNX in osteoblasts and aggrecan, collagen II in chondroblasts. Finally, colony formation was applied to measure the cell proliferation of CESCs transfected with ov-CHST3 or sh-CHST3 when cocultured with bone marrow cells, WB for the protein expression of CHST3, CSPG4 and ELAVL1 in CSECs, transwell assay for the migration of CESCs to bone marrow cells, TEM image for the cellular characteristics of bone marrow cells, and WB for the protein profile of VCAN, VASP, NCAN and OFD1 in bone marrow cells. CHST3 and CSPG4 were differentially expressed and interacted in grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration; CD73, CD90 and CD105 were lowly expressed in CESCs, osteogenic or chondroblastic induction changed the characteristics, proliferation, cell cycle and specific biomarkers of osteoblasts and chondroblasts after 14 or 21 days,; CHST3 affected the cell proliferation, protein profile, migration and cellular features of cocultured CESCs or bone marrow cells. CHST3 overexpression promoted CESCs to regulate bone marrow cells through interaction with CSPG4 to repair the grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration. 相似文献