首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The system of hepatocyte growth factor (HGF) and its receptor c‐Met plays a critical role in tumor invasive growth and metastasis. The mortality rate of colorectal cancer (CRC), one of the most commonly diagnosed malignancies, is increased by it gradual development into metastasis, most frequently in the liver. Overexpression of c‐Met, the protein tyrosine kinase receptor for the HCF/scatter factor, has been implicated in the progression and metastasis of human colorectal carcinoma. In this study, we aimed to investigate the role of c‐Met in CRC liver metastasis and illustrate the clinical impact of regulating HGF/c‐Met signaling in patients with CRC liver metastasis. We found that (I) higher levels of c‐Met expression (mRNA and Protein) in CRC liver metastasis than primary CRC by assessing the patient tissue samples; (II) a positive correlation of c‐Met expression with tumor stages of CRC liver metastasis, as well as c‐Met expression in CRC, live metastasis concurred with regional lymph node metastasis; (III) the clinical impact of downregulation of HGF/c‐Met signaling on the reduction of proliferation and invasion in CRC liver metastasis. Therefore, we demonstrate that the regulation of HGF/c‐Met pathways may be a promising strategy in the treatment of patients with CRC liver metastasis.  相似文献   

3.
Non–small‐cell lung cancer (NSCLC) is the most common cause of death from cancer worldwide. MicroRNAs (miRNAs) are a group of important regulators in NSCLC, including miR‐198. However, the underlying molecular mechanisms of miR‐198 involvement in intrinsic resistance to radiotherapy in NSCLC remain to be elucidated. In this study, to investigate the clinical significance of miR‐198 in NSCLC in relation to the response to radiotherapy, we determined the expression patterns of miR‐198 between responders and nonresponders after 2 months of radiotherapy and found that decreased expressions of miR‐198 were associated with radiotherapy resistance. In addition, we altered the endogenous miR‐198 using mimics or inhibitors to examine the effects of miR‐198 on 4‐Gy–irradiated A549 and SPCA‐1 cells in vitro. Upregulating miR‐198 was shown to inhibit cell proliferation, migration, and invasion and induce apoptosis. MiR‐198 inhibition produced a reciprocal result. PHA665752, a selective small‐molecule c‐Met inhibitor, potently inhibited hepatocyte growth factor (HGF)‐stimulated and constitutive c‐Met phosphorylation and rescued 4‐Gy–irradiated A549 and SPCA‐1 cells from miR‐198 inhibition. Most importantly, we established tumor xenografts of 4‐Gy–irradiated A549 and SPCA‐1 cells in nude mice and found that miR‐198 could suppress tumor formation. Hence, our data delineates the molecular pathway by which miR‐198 inhibits NSCLC cellular proliferation and induces apoptosis following radiotherapy, providing a novel target aimed at improving the radiotherapeutic response in NSCLC.  相似文献   

4.
Efficient and effective therapies are required for diabetes mellitus. The use of adult stem cells for treating diabetes represents a major focus of current research. We have attempted to differentiate adult stem cells produced from umbilical cord blood‐derived stromal cells into insulin‐producing cells (IPCs). By activating the c‐Met/HGF axis through temporal hypoxia treatment and hepatocyte growth factor (HGF) supplementation, our protocol resulted in the differentiation of cells into functional pancreatic endocrine cells with increased viability. Glucose stimulation test results showed that significantly greater amounts of C‐peptide and insulin were released from the differentiated cells than from undifferentiated cells. These IPCs were capable of reversing the hyperglycemia of diabetic mice. In conclusion, targeting the c‐Met/HGF axis can be considered an effective and efficient means of obtaining IPCs from adult stem cells.  相似文献   

5.
c‐Met, the receptor for hepatocyte growth factor (HGF), is cell surface tyrosine kinase that controls cancer cell growth, survival, invasion, and metastasis. Post‐translational modification, such as glycosylation, plays an essential role in regulating the function of cell surface molecules. Whether glycosylation modification regulates the enzymatic properties of c‐Met is unknown. In this study, we investigated the effect of glycosylation on the function of c‐Met. We found that c‐Met is an N‐linked glycosylated protein. Both pro‐Met and p145Met (the β subunit of mature c‐Met) have N‐linked glycosylation. Glycosylation inhibitor studies revealed that the N‐glycosylation modification of p145Met is from pro‐Met, but not due to the further modification of pro‐Met. Importantly, blocking the N‐glycosylation targets pro‐Met to cytoplasm and initiates its phosphorylation independent of HGF engagement. Nonglycosylated pro‐Met activates c‐Met downstream pathways to a certain extent to compensate for the degradation of p145Met induced by glycosylation blocking‐mediated endoplasmic reticulum (ER) stress. J. Cell. Biochem. 114: 816–822, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
HGF/SF-met signaling in the control of branching morphogenesis and invasion   总被引:22,自引:0,他引:22  
Hepatocyte growth factor/Scatter factor (HGF/SF) is a multifunctional growth factor which can induce diverse biological events. In vitro, these include scattering, invasion, proliferation and branching morphogenesis. In vivo, HGF/SF is responsible for many processes during embryonic development and a variety of activities in adults, and many of these normal activities have been implicated in its role in tumorgenesis and metastasis. The c-Met receptor tyrosine kinase is the only known receptor for HGF/SF and mediates all HGF/SF induced biological activities. Upon HGF/SF stimulation, the c-Met receptor is tyrosine-phosphorylated which is followed by the recruitment of a group of signaling molecules and/or adaptor proteins to its cytoplasmic domain and its multiple docking sites. This action leads to the activation of several different signaling cascades that form a complete network of intra and extracellular responses. Different combinations of signaling pathways and signaling molecules and/or differences in magnitude of responses contribute to these diverse series of HGF/SF-Met induced activities and most certainly are influenced by cell type as well as different cellular environments. In this review, we focus on HGF/SF-induced branching morphogenesis and invasion, and bring together recent new findings which provide insight into how HGF/SF, via c-Met induces this response.  相似文献   

7.
8.
9.
Plasminogen-related growth factors, a new family of polypeptide growth factors with the basic domain organization and mechanism of activation of the blood proteinase plasminogen, include hepatocyte growth factor/scatter factor (HGF/SF), a potent effector of the growth, movement, and differentiation of epithelia and endothelia, and hepatocyte growth factor-like/macrophage stimulating protein (HGF1/MSP), an effector of macrophage chemotaxis and phagocytosis. Phylogeny of the serine proteinase domains and analysis of intron-exon boundaries and kringle sequences indicate that HGF/SF, HGF1/MSP, plasminogen, and apolipoprotein (a) have evolved from a common ancestral gene that consisted of an N-terminal domain corresponding to plasminogen activation peptide (PAP), 3 copies of the kringle domain, and a serine proteinase domain. Models of the N domains of HGF/SF, HGF1/MSP, and plasminogen, characterized by the presence of 4 conserved Cys residues forming a loop in a loop, have been modeled based on disulfide-bond constraints. There is a distinct pattern of charged and hydrophobic residues in the helix-strand-helix motif proposed for the PAP domain of HGF/SF; these may be important for receptor interaction. Three-dimensional structures of the 4 kringle and the serine proteinase domains of HGF/SF were constructed by comparative modeling using the suite of programs COMPOSER and were energy minimized. Docking of a lysine analogue indicates a putative lysine-binding pocket within kringle 2 (and possibly another in kringle 4). The models suggest a mechanism for the formation of a noncovalent HGF/SF homodimer that may be responsible for the activation of the Met receptor. These data provide evidence for the divergent evolution and structural similarity of plasminogen, HGF/SF, and HGF1/MSP, and highlight a new strategy for growth factor evolution, namely the adaptation of a proteolytic enzyme to a role in receptor activation.  相似文献   

10.
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR‐1‐3p and miR‐206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR‐1‐3p and miR‐206 can overcome HGF‐induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR‐1‐3p and miR‐206 restored the sensitivities of lung cancer cells PC‐9 and HCC‐827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR‐1‐3p and miR‐206 directly target HGF receptor c‐Met in lung cancer. Knockdown of c‐Met mimicked the effects of miR‐1‐3p and miR‐206 transfections Meanwhile, c‐Met overexpression attenuated the effects of miR‐1‐3p and miR‐206 in HGF‐induced gefitinib resistance of lung cancers. Furthermore, we showed that miR‐1‐3p and miR‐206 inhibited c‐Met downstream Akt and Erk pathway and blocked HGF‐induced epithelial‐mesenchymal transition (EMT). Finally, we demonstrated that miR‐1‐3p and miR‐206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR‐1‐3p and miR‐206 in overcoming HGF‐induced gefitinib resistance in EGFR mutant lung cancer cell.  相似文献   

11.
Hepatocyte growth factor (HGF) is essential for embryogenesis, tissue regeneration and tumour malignancy through the activation of its receptor, c‐Met. We previously demonstrated that HGF α‐chain hairpin–loop, K1 domain and β‐chain are required for c‐Met signalling. The sequential phosphorylation of tyrosine residues, from c‐Met kinase domain to multidocking regions, is required for HGF‐signalling transduction. Herein, we provide evidence that the disconcerted activation of c‐Met tyrosine regions fails to induce biological functions. When human cells were incubated with ‘mouse HGF’, kinase domain activation (i.e. phospho‐Tyr‐1230/34/35) became evident, but the multidocking site (i.e. Tyr‐1349) was not phosphorylated, resulting in unsuccessful induction of migration and mitogenesis. The binding ability of mouse HGF α‐chain, or of β‐chain, to human c‐Met was lower than that of human HGF, as evidenced by HGF–chimera assay. Notably, only four amino acid positions in HGF α‐chain hairpin–loop and K1 domain and six positions in β‐chain differed between human HGF and mouse HGF. The human‐specific amino acids (such as Gln‐95 in hairpin–loop, Arg‐134 in K1 domain and Cys‐561 in β‐chain) may be important for accurate c‐Met assembly and signalling transduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
14.
15.
16.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

17.
Recently, aberrant expression of miR‐876‐5p has been reported to participate in the progression of several human cancers. However, the expression and function of miR‐876‐5p in osteosarcoma (OS) are still unknown. Here, we found that the expression of miR‐876‐5p was significantly down‐regulated in OS tissues compared to para‐cancerous tissues. Clinical association analysis indicated that underexpression of miR‐876‐5p was positively correlated with advanced clinical stage and poor differentiation. More importantly, OS patients with low miR‐876‐5p level had a significant shorter overall survival compared to miR‐876‐5p high‐expressing patients. In addition, gain‐ and loss‐of‐function experiments demonstrated that miR‐876‐5p restoration suppressed whereas miR‐876‐5p knockdown promoted cell proliferation, migration and invasion in both U2OS and MG63 cells. In vivo studies revealed that miR‐876‐5p overexpression inhibited tumour growth of OS in mice. Mechanistically, miR‐876‐5p reduced c‐Met abundance in OS cells and inversely correlated c‐Met expression in OS tissues. Herein, c‐Met was recognized as a direct target of miR‐876‐5p using luciferase reporter assay. Notably, c‐Met restoration rescued miR‐876‐5p attenuated the proliferation, migration and invasion of OS cells. In conclusion, these findings indicate that miR‐876‐5p may be used as a potential therapeutic target and promising biomarker for the diagnosis and prognosis of OS.  相似文献   

18.
19.
20.
Accumulating research works have reported that long noncoding RNAs (lncRNAs) are involved in various cancers, including cervical cancer. LncRNA DGCR5 has been identified in many cancers. However, the biological role of DGCR5 in cervical cancer remains barely known. We aimed to investigate the biological function of DGCR5 in cervical cancer progression. Here, in our current study, we observed that DGCR5 was downregulated in human cervical cancer cell lines (MS751, SiHa, HeLa, and HT-3) compared with the primary normal cervical squamous cells (NCSC1 and NCSC2). Then, DGCR5 was restrained by transfection with lenti-virus-short hairpin RNA (LV-shRNA) while induced by LV-DGCR5 in HeLa and C33A cells. Silence of DGCR5 obviously induced cervical cancer cell viability and cell proliferation. Reversely, upregulation of DGCR5 inhibited HeLa and C33A cell survival and proliferation. Furthermore, silencing of DGCR5 increased cervical cancer cell colony formation ability and decreased cell apoptosis, whereas its overexpression exhibited an opposite process. Moreover, DGCR5 suppressed migration and invasion capacity of cervical cancer cells. The Wnt signaling is integral in numerous biological processes. Here, we found that Wnt signaling was strongly activated in cervical cancer cells. Downregulation of DGCR5 contributed to cervical cancer progression by activating Wnt signaling. Subsequently, in vivo animal models were used to confirm that DGCR5 suppressed cervical cancer via targeting Wnt signaling. In conclusion, we reported that DGCR5 was involved in cervical cancer progression via modulating the Wnt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号