共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Regulating the collective migration of cells is an important issue in bioengineering. Enhancing or suppressing cell migration and controlling the migration direction is useful for various physiological phenomena such as wound healing. Several methods of migration regulation based on different mechanical stimuli have been reported. While vibrational stimuli, such as sound waves, show promise for regulating migration, the effect of the vibration direction on collective cell migration has not been studied in depth. Therefore, we fabricated a vibrating system that can apply horizontal vibration to a cell culture dish. Here, we evaluated the effect of the vibration direction on the collective migration of fibroblasts in a wound model comprising two culture areas separated by a gap. Results showed that the vibration direction affects the cell migration distance: vibration orthogonal to the gap enhances the collective cell migration distance while vibration parallel to the gap suppresses it. Results also showed that conditions leading to enhanced migration distance were also associated with elevated glucose consumption. Furthermore, under conditions promoting cell migration, the cell nuclei become elongated and oriented orthogonal to the gap. In contrast, under conditions that reduce the migration distance, cell nuclei were oriented to the direction parallel to the gap. 相似文献
3.
《Cell Stem Cell》2022,29(2):315-327.e6
- Download : Download high-res image (171KB)
- Download : Download full-size image
4.
5.
6.
7.
8.
Essential role of Smad3 in the inhibition of inflammation-induced PPARbeta/delta expression 总被引:2,自引:0,他引:2
下载免费PDF全文

Tan NS Michalik L Di-Poï N Ng CY Mermod N Roberts AB Desvergne B Wahli W 《The EMBO journal》2004,23(21):4211-4221
9.
We have recently demonstrated that the three principal mammalian isoforms of transforming growth factor beta (TGF-beta) exert distinct effects upon: (1) the migration of confluent adult fibroblasts into 3D gels of native type I collagen fibres (i.e. TGF-beta-1 and -2 had no apparent motogenic activity, whilst TGF-beta-3 induced a dose-dependent stimulation of cell migration); and (2) the synthesis of hyaluronan (HA) by these cells is also affected by the TGF-beta isoforms in a manner which parallels their effect on cell migration. The objective of the present study is to elucidate the manner in which this differential activity of the TGF-beta-1, -2 and -3 may be modulated by experimental parameters. Data presented in this communication indicate that cytokine bioactivity is determined by a combination of cell density and the nature of the macromolecular substratum. Thus, we now report that all three TGF-beta isoforms inhibit the migration of subconfluent cells in the collagen gel assay. Our data confirm that the migration of confluent cells is stimulated by TGF-beta-3 and further indicate that this motogenic activity is completely abrogated by either TGF-beta-1 or -2 when these are co-incubated with TGF-beta-3. In contrast to these results obtained using a native type I collagen substratum, all three isoforms stimulated adult fibroblast migration in the transmembrane assay (in which cells are adherent to a 2-D porous polycarbonate substratum). The precise effect of TGF-beta isoforms on HA synthesis was also affected by cell density and the nature of the substratum in a manner which paralleled their diverse effects on cell migration (i.e. stimulation, inhibition or no effect). Streptomyces hyaluronidase completely neutralized the TGF-beta-3-induced stimulation of confluent fibroblast migration, thus suggesting a mechanistic link between the cytokine-induced cell migration and HA synthesis under these conditions. Taken together, these data indicate that: (1) the bioactivity of TGF-beta-1, -2 and -3 are determined by cell density, the macromolecular substratum and the presence of other cytokines; and (2) it is therefore necessary to define cytokine bioactivity within the context of a larger 'tissue response unit' which more fully defines the activity state of the target cell and its microenvironment. 相似文献
10.
Eun-Ah Cho Pingfeng Zhang Vikas Kumar Mikhail Kavalchuk Hao Zhang Qingqiu Huang James S. Duncan Jinhua Wu 《Structure (London, England : 1993)》2021,29(4):320-329.e4
- Download : Download high-res image (254KB)
- Download : Download full-size image
11.
Senthil N. Arun Ding Xie Amber C. Howard Quincy Zhong Xiaofeng Zhong Paul L. McNeil Wendy B. Bollag 《Journal of lipid research》2013,54(3):581-591
Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D3, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing. 相似文献
12.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), has diverse effects in a variety of tissues and cell types, including skin. Since 1,25(OH)2D3 affects both fibroblast and keratinocytes, we evalauated the effect of 1,25(OH)2D3 or wound healing. We investigated the effect of the topically applied 1,25(OH)2D3 or vehicle on the healing of cutaneous wounds in rats in a blinded manner. Wound areas were measured by planimetry technique. Healing was expressed as the percentage of the original wound area that was healed. 1,25(OH)2D3 at concentrations between 5 and 50 ng/day caused a dose-dependent acceleration of healing. Time course and specificity studies indicated that 1,25(OH)2D3 specifically promoted healing between 1–5 days after wounding as compared with vitamin D (0.5 μg/day), which showed no significant improvement over control. Our results suggest that 1,25(OH)2D3 and its analogues may be a new class of compounds that could be developed to enhance wound healing. © 1995 Wiley-Liss, Inc. 相似文献
13.
Yang Liu Xiaofan Yang Yutian Liu Tao Jiang Sen Ren Jing Chen Hewei Xiong Meng Yuan Wenqing Li Hans-Günther Machens Zhenbing Chen 《Journal of cellular and molecular medicine》2021,25(13):5857-5868
As one of the most common pathological processes in the clinic, wound healing has always been an important topic in medical research. Improving the wound healing environment, shortening the healing time and promoting fast and effective wound healing are hot and challenging issues in clinical practice. The nuclear factor-erythroid–related factor 2 (NFE2L2 or NRF2) signalling pathway reduces oxidative damage and participates in the regulation of anti-oxidative gene expression in the process of oxidative stress and thus improves the cell protection. Activation of the NRF2 signalling pathway increases the resistance of the cell to chemical carcinogens and inflammation. The signal transduction pathway regulates anti-inflammatory and antioxidant effects by regulating calcium ions, mitochondrial oxidative stress, autophagy, ferroptosis, pyroptosis and apoptosis. In this article, the role of the NRF2 signalling pathway in wound healing and its research progress in recent years are reviewed. In short, the NRF2 signalling pathway has crucial clinical significance in wound healing and is worthy of further study. 相似文献
14.
本文旨在探索腺苷A2A受体在颅脑创伤、皮肤创伤及放射损伤复合创伤中的作用差异.分别观察和检测野生型小鼠、A2A受体基因敲除小鼠以及给予A2A受体激动剂CGS21680治疗的小鼠在皮肤创伤、放射损伤复合创伤后的伤口愈合时间以及颅脑创伤后的神经功能缺损情况、伤侧皮层脑含水量、脑脊液中谷氨酸浓度.结果表明,CGS21680促进外周组织伤口愈合,却加重颅脑创伤模型的神经功能损害,这与其促进谷氨酸释放有关.相反,A2A受体基因敲除显著延迟小鼠皮肤创伤及放射损伤复合创伤模型的伤口愈合,而在颅脑创伤模型中通过抑制谷氨酸释放产生保护效应.本研究初步证实,A2A受体激活促进谷氨酸大量释放可能是其在中枢损伤与外周损伤产生作用差异的机理之一,这为将来临床应用A2A受体激动剂减轻外周损伤,而用A2A受体拈抗剂减轻颅脑损伤提供了一定的实验依据. 相似文献
15.
《Cell communication & adhesion》2013,20(6):269-280
AbstractDesmosomes are the most important intercellular adhering junctions that adhere two adjacent keratinocytes directly with desmosomal cadherins, that is, desmogleins (Dsgs) and desmocollins, forming an epidermal sheet. Recently, two cell–cell adhesion states of desmosomes, that is, “stable hyper-adhesion” and “dynamic weak-adhesion” conditions have been recognized. They are mutually reversible through cell signaling events involving protein kinase C (PKC), Src and epidermal growth factor receptor (EGFR) during Ca2+-switching and wound healing. This remodeling is impaired in pemphigus vulgaris (PV, an autoimmune blistering disease), caused by anti-Dsg3 antibodies. The antibody binding to Dsg3 activates PKC, Src and EGFR, linked to generation of dynamic weak-adhesion desmosomes, followed by p38MAPK-mediated endocytosis of Dsg3, resulting in the specific depletion of Dsg3 from desmosomes and acantholysis. A variety of pemphigus outside-in signaling may explain different clinical (non-inflammatory, inflammatory, and necrolytic) types of pemphigus. Pemphigus could be referred to a “desmosome-remodeling disease involving pemphigus IgG-activated outside-in signaling events”. 相似文献
16.
Accumulating evidence indicates that there is extensive crosstalk between integrins and TGF‐β signalling. TGF‐β affects integrin‐mediated cell adhesion and migration by regulating the expression of integrins, their ligands and integrin‐associated proteins. Conversely, several integrins directly control TGF‐β activation. In addition, a number of integrins can interfere with both Smad‐dependent and Smad‐independent TGF‐β signalling in different ways, including the regulation of the expression of TGF‐β signalling pathway components, the physical association of integrins with TGF‐β receptors and the modulation of downstream effectors. Reciprocal TGF‐β–integrin signalling is implicated in normal physiology, as well as in a variety of pathological processes including systemic sclerosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease and cancer; thus, integrins could provide attractive therapeutic targets to interfere with TGF‐β signalling in these processes. 相似文献
17.
Thomsen N Chappell A Ali RG Jones T Adams DH Matthaei KI Campbell HD Cowin AJ Arkell RM 《Genesis (New York, N.Y. : 2000)》2011,49(8):681-688
The gelsolin related actin binding protein, Flii, is able to regulate wound healing; mice with decreased Flii expression show improved wound healing whereas mice with elevated Flii expression exhibit impaired wound healing. In both mice and humans Flii expression increases with age and amelioration of FLII activity represents a possible therapeutic strategy for improved wound healing in humans. Despite analysis of Flii function in a variety of organisms we know little of the molecular mechanisms underlying Flii action. Two new murine alleles of Flii have been produced to drive constitutive or tissue-specific expression of Flii. Each strain is able to rescue the embryonic lethality associated with a Flii null allele and to impair wound healing. These strains provide valuable resources for ongoing investigation of Flii function in a variety of biological processes. 相似文献
18.
MiRNA是真核生物体内约由22个核苷酸组成的内源性非编码单链RNA,可调节基因转录。它通过其5’非翻译区(UTR)与目标mRNA的3’端非翻译区相结合,从而抑制后者的转录后翻译和降解,进而调节一系列生物学过程,包括生物体生长、发育和疾病等。研究表明,miRNA在干细胞分化、肿瘤形成、血管发生、内耳形成等过程中均发挥重要作用,已成为调节生物学过程的核心因子。伤口愈合是一个与多种类型细胞、细胞因子及细胞外基质相关的过程,它受机体多种因素紧密调控。伤口愈合过程一般被分为三个阶段:炎症反应期,肉芽生长期和组织重建期。已有大量证据证实miRNA在皮肤创伤愈合过程中发挥重要作用,并且miRNA在不同的愈合阶段发挥不同的作用。本文就miRNA在皮肤形态、胎儿无痕愈合及成人伤口愈合各环节中的作用做一综述。 相似文献
19.
20.
Michael S. Hu Mimi R. Borrelli Wan Xing Hong Samir Malhotra Alexander T. M. Cheung Ryan C. Ransom 《Organogenesis》2018,14(1):46-63
Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed. 相似文献