首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摘要 目的:探讨双歧杆菌MIMBb75通过调节血管活性肠肽(VIP)/环磷酸腺苷(cAMP)/蛋白激酶A(PKA)和哺乳动物雷帕霉素靶蛋白(mTOR)通路对溃疡性结肠炎(UC)小鼠的影响。方法:BALB/c小鼠随机分为正常对照(NC)组、结肠炎模型(UC)组、Mesalazine组和MIMBb75低、高剂量组、MIMBb75高剂量+VIP antagonist组、MIMBb75高剂量+MHY1485组(每组10只),除NC组外均采用5%葡聚糖硫酸钠(DSS)诱导UC模型。治疗结束后,观察小鼠的一般情况及UC疾病活动指数(DAI),检测小鼠肠道组织病理损伤、结肠组织中髓过氧化物酶(MPO)活性、肠道菌群多样性(Chao指数、Shannon指数和Simpson指数)及结肠组织VIP、cAMP、PKA、水通道蛋白3(AQP3)、mTOR、核糖体蛋白S6激酶(S6K1)的mRNA和蛋白水平。结果:与UC组相比,MIMBb75低、高剂量组和Mesalazine组小鼠的体重升高、DAI评分降低,组织病理损伤得到改善,结肠长度增加,MPO活性降低,Chao指数、Shannon指数和Simpson指数升高;VIP、cAMP、PKA、AQP3的mRNA水平和VIP、cAMP、AQP3蛋白的表达及PKA的磷酸化水平升高,mTOR和S6K1 mRNA及其蛋白的磷酸化水平降低(P<0.05)。与MIMBb75高剂量组相比,MIMBb75高剂量+VIP antagonist组VIP、cAMP、PKA、AQP3的mRNA水平和VIP、cAMP、AQP3蛋白的表达及PKA的磷酸化水平降低(P<0.05);MIMBb75高剂量+MHY1485组mTOR和S6K1 mRNA及其蛋白的磷酸化水平升高(P<0.05)。VIP antagonist和MHY1485均能逆转MIMBb75对UC小鼠的保护作用,使其结肠损伤加重,MPO活性增高(P<0.05)。结论:双歧杆菌可改善UC小鼠的结肠损伤,增加肠道菌群的多样性,这可能与激活VIP/cAMP/PKA通路、抑制mTOR通路有关。  相似文献   

2.
The hexosamine pathway (HP) is a biochemical hypothesis recently proposed explaining cellular alterations occurring during diabetic microvascular complications. Diabetic retinopathy is a common microvascular complication of diabetes, and it is known that cell proliferation is severely affected during the development of the disease. Particularly, early stages are characterized by death of the retinal microvascular cells, pericytes. Gangliosides have often been described to regulate cell growth; however, very few studies focused on the potential role of gangliosides in diabetic microvascular alterations. The aim of this article was to investigate the effect of the HP activation on pericyte proliferation and determine the potential implication of gangliosides in this process. Results indicate first that HP activation, mimicked by glucosamine treatment, decreased pericyte proliferation. Second, glucosamine treatment induced a modification of gangliosides pattern, particularly GM1 and GD3 were significantly increased. Next, results showed that exogenous addition of a-series gangliosides (GM3, GM2, GM1, GD1a) and b-series ganglioside (GD3) caused a decrease of pericyte proliferation, whereas nonsialylated precursors glucosylceramide and lactosylceramide were without effect. Furthermore, when ganglioside biosynthesis was blocked using PPMP, a glucosylceramide synthase inhibitor, the effects of glucosamine on pericyte proliferation were partially reversed. Our results suggest that in retinal pericytes, gangliosides and particularly GM1 and GD3 that are increased in response to glucosamine, are involved in the antiproliferative effect of glucosamine. These observations also underlie the potential involvement of gangliosides in a pathological context, such as diabetic microvascular complications.  相似文献   

3.
Galectin-3 (Gal-3), a member of a family of highly conserved carbohydrate-binding proteins, has recently emerged as a novel cellular modulator at inflammatory foci. Here we investigated the effects of Gal-3 on central effector functions of human neutrophils, including phagocytosis, exocytosis of secretory granules, and survival. We examined the effects of Gal-3 alone or in combination with soluble fibrinogen (sFbg), an extracellular mediator that plays a key role during the early phase of the inflammatory response through binding to integrin receptors. In addition we evaluated the intracellular signals triggered by these mediators in human neutrophils. Human neutrophils incubated with recombinant Gal-3 alone increased their phagocytic activity and CD66 surface expression. In contrast to the known antiapoptotic effect of Gal-3 on many cellular types, Gal-3 enhanced PMN apoptotic rate. Preincubation with Gal-3 primed neutrophils to the effects of sFbg, resulting in a synergistic action on degranulation. On the other hand, Gal-3 and sFbg had opposite effects on PMN survival, and the simultaneous action of both agonists partially counteracted the proapoptotic effects of Gal-3. In addition, although sFbg induced its effects through the activation of the ERKs, Gal-3 led to p38 phosphorylation. Disruption of this signaling pathway abrogated Gal-3-mediated modulation of neutrophil degranulation, phagocytosis, and apoptosis. Together, our results support the notion that Gal-3 and sFbg are two physiological mediators present at inflammatory sites that activate different components of the MAPK pathway and could be acting in concert to modulate the functionality and life span of neutrophils.  相似文献   

4.
The application of Arabidopsis genetics to research into the responses of plants to light has enabled rapid recent advances in this field. The plant photoreceptor phytochrome mediates well-defined responses that can be exploited to provide elegant and specific genetic screens. By this means, not only have mutants affecting the phytochromes themselves been isolated, but also mutants affecting the transduction of phytochrome signals. The genes involved in these processes have now begun to be characterized by using this genetic approach to isolate signal transduction components. Most of the components characterized so far are capable of being translocated to the cell nucleus, and they may help to define a new system of regulation of gene expression. This review summarises the ongoing contribution made by genetics to our understanding of light perception and signal transduction by the phytochrome system.  相似文献   

5.
类赖氨酰氧化酶2(lysyl oxidase—like 2,LOXL2)是赖氨酰氧化酶(1ysyl oxidase,LOX)基因家族的成员之一,其表达产物能促进胶原沉积。LOXL2的过表达能促进纤维化,并与肿瘤侵袭、转移及不良预后有关。目前大部分学者认为LOXL2是一种转移促进基因,也有实验支持其是一种肿瘤抑制基因。研究发现LOXL2可以通过激活Snail/Ecadherin通路或Src/FAK通路促进转移。LOXL2有望作为肿瘤生物标志物,用于预后判断,成为一个新的治疗靶点。  相似文献   

6.
卵巢癌是女性生殖系统常见的恶性肿瘤,发病率居于妇科恶性肿瘤第三位,死亡率居于妇科恶性肿瘤之首。目前对卵巢癌的标准治疗包括肿瘤细胞减灭术及卡铂和紫杉醇的联合化疗。PI3K/AKT/mTOR信号通路在卵巢癌的细胞增殖、侵袭、细胞周期进展、血管生成及耐药中发挥重要作用,是卵巢癌中最常发生改变的细胞内途径。本文对PI3K/AKT/mTOR信号通路及其在卵巢癌增殖和进展中的影响、PI3K/AKT/mTOR信号通路抑制剂在卵巢癌中的治疗应用做简要综述。  相似文献   

7.
Previously, we generated transgenic tobacco BY2 suspension-cultured cells (GT6 cells) that produced human beta1,4-galactosyltransferase. In this study, we analyze the N-glycan structures of glycoproteins secreted from GT6 cells to the spent medium. The N-glycans were liberated by hydrazinolysis, and the resulting oligosaccharides were labeled with 2-aminopyridine (PA). The pyridylaminated glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by the combined use of 2D PA sugar chain mapping, MS/MS analysis, and exoglycosidase digestion. The distribution of proposed N-glycan structures of GT6-secreted glycoproteins (GalGNM5 [26.8%], GalGNM4 [18.4%], GalGNM3 [19.6%], and GalGNM3X [35.2%]) is different from that found in intracellular glycoproteins (M7A [9.3%], M7B [15.9%], M6B [19.5%], M5 [1.4%], M3X [6.6%], GalGNM5 [35.5%], and GalGNM3 [11.8%]). In vitro, sialic acid was transferred to sugar chains of extracellular glycoproteins from the GT6 spent medium. The results suggest that sugar chains of extracellular glycoproteins from the GT6 spent medium are candidates for substrates of sialic acid transfer.  相似文献   

8.
We have used mouse embryonic fibroblasts (MEFs) devoid of Ras proteins to illustrate that they are essential for proliferation and migration, but not for survival, at least in these cells. These properties are unique to the Ras subfamily of proteins because ectopic expression of other Ras‐like small GTPases, even when constitutively active, could not compensate for the absence of Ras proteins. Only constitutive activation of components of the Raf/Mek/Erk pathway was sufficient to sustain normal proliferation and migration of MEFs devoid of Ras proteins. Activation of the phosphatidylinositol 3‐kinase (PI3K)/PTEN/Akt and Ral guanine exchange factor (RalGEF)/Ral pathways, either alone or in combination, failed to induce proliferation or migration of Rasless cells, although they cooperated with Raf/Mek/Erk signalling to reproduce the full response mediated by Ras signalling. In contrast to current hypotheses, Ras signalling did not induce proliferation by inducing expression of D‐type Cyclins. Rasless MEFs had normal levels of Cyclin D1/Cdk4 and Cyclin E/Cdk2. However, these complexes were inactive. Inactivation of the pocket proteins or knock down of pRb relieved MEFs from their dependence on Ras signalling to proliferate.  相似文献   

9.
It is well-accepted that protein quality control (occurring either after protein synthesis or after cell damage) is mainly ensured by HSP, but the mechanism by which HSP decides whether the protein will be degraded or not is poorly understood. Within this framework, it has been hypothesized that O-GlcNAc, a cytosolic and nuclear-specific glycosylation whose functions remain unclear, could take a part in the protection of proteins against degradation by modifying both the proteins themselves and the proteasome. Because the synthesis of O-GlcNAc is tightly correlated to glucose metabolism and Hsp70 was endowed with GlcNAc-binding property, we studied the relationship between GlcNAc-binding activity of both Hsp70 and Hsc70 (the nucleocytoplasmic forms of HSP70 family) and glucose availability and utilization. We thus demonstrated that low glucose concentration, inhibition of glucose utilization with 2DG, or inhibition of glucose transport with CytB led to an increase of Hsp70 and Hsc70 lectin activities. Interestingly, the response of Hsp70 and Hsc70 lectin activities toward variations of glucose concentration appeared different: Hsp70 lost its lectin activity when glucose concentration was >5 mM (i.e., physiological glucose concentration) in contrast to Hsc70 that exhibited a maximal lectin activity for glucose concentration approximately 5 mM and at high glucose concentrations. This work also demonstrates that HSP70 does not regulate its GlcNAc-binding properties through its own O-GlcNAc glycosylation.  相似文献   

10.
Tumor cell can be significantly influenced by various chemical groups of the extracellular matrix proteins. However, the underlying molecular mechanisms involved in the interaction between cancer cells and functional groups in the extracellular matrix remain unknown. Using chemically modified surfaces with biological functional groups (CH3, NH2, OH), it was found that hydrophobic surfaces modified with CH3 and NH2 suppressed cell proliferation and induced the number of apoptotic cells. Mitochondrial dysfunction, cytochrome c release, Bax upregulation, cleaved caspase-3 and PARP, and Bcl-2 downregulation indicated that hydrophobic surfaces with CH3 and NH2 triggered the activation of intrinsic apoptotic signaling pathway. Cells on the CH3- and NH2-modified hydrophobic surfaces showed downregulated expression and activation of integrin β1, with a subsequent decrease of focal adhesion kinase (FAK) activity. The RhoA/ROCK/PTEN signaling was then activated to inhibit the phosphorylation of PI3K and AKT, which are essential for cell proliferation. However, pretreatment of MDA-MB-231 cells with SF1670, a PTEN inhibitor, abolished the hydrophobic surface-induced activation of the intrinsic pathway. Taken together, the present results indicate that CH3- and NH2-modified hydrophobic surfaces induce mitochondria-mediated apoptosis by suppressing the PTEN/PI3K/AKT pathway, but not OH surfaces. These findings are helpful to understand the interaction between extracellular matrix and cancer cells, which might provide new insights into the mechanism potential intervention strategies for tumor prognosis.  相似文献   

11.
12.
摘要 目的:探讨BNP/NPR-A/BKCa信号通路在大鼠神经痛形成中的作用及机制研究。方法:选取SPF级大鼠作为研究对象,并构建神经痛病理性疼痛大鼠模型。并分为空白对照组、假手术组、A组(20 ng/mL BNP梢内注射)、B组(50 ng/mL BNP梢内注射)和C组(100 ng/mL BNP梢内注射)。采用qRT-PCR和Western blot检测NPR-A和BKCa的mRNA和蛋白表达水平。采用ELISA法检查炎症因子。全细胞膜片钳技术检测痛觉神经元BKCa通道电流;对大鼠进行机械性痛觉过敏测试和温度性痛觉敏感测试。结果:与空白组相比,模型组、A、B和C组PWT和PWL明显更低(P<0.05);与模型组相比,A、B和C组PWT和PWL明显更高,且C组大于B和A组,B组大于A组(P<0.05)。与空白组相比,模型组NPR-A的蛋白和mRAN水平明显更高,而BKCa-α明显更低(P<0.05);与模型组相比,A、B和C组NPR-A和BKCa-α的蛋白和mRNA明显更高,且C组大于B和A组,B组大于A组(P<0.05)。各电压水平,与空白组相比,模型组、A、B和C组BKCa-α电流水平明显更低(P<0.05);与模型组相比,A、B和C组BKCa-α电流水平明显更高,且C组大于B和A组,B组大于A组(P<0.05)。与空白组相比,模型组、A、B和C组TNF-α、IL-6和IL-18水平明显更高(P<0.05);与模型组相比,A、B和C组TNF-α、IL-6和IL-18水平明显更低,且C组小于B和A组,B组小于A组(P<0.05)。结论:靶向上调BNP的表达水平可增加BKCa的表达及BKCa电流,同时BNP的表达上调还有助于抑制炎症因子水平,从而达到多途径缓解疼痛的目的。  相似文献   

13.
Background : Liver cancer is an extremely common cancer with the highest mortality rate and poor prognosis. Owing to their low systemic toxicity and few side effects, natural compounds may provide better therapeutic effects for patients. (2E)-1-(2,4,6-trimethoxyphenyl)-3-(4-chlorophenyl)prop-2-en-1-one (TMOCC), a chalcone derivative, exhibits cytotoxicity towards many tumor cells. However, the anticancer mechanism of TMOCC has not been elucidated in human hepatocellular carcinoma (HCC). Methods : Cell Counting Kit-8 and colony formation assays were used to evaluate the effects of TMOCC on viability and proliferation. Mitochondrial transmembrane potential and flow cytometry assays were used to detect apoptosis. The expression levels of proteins related to apoptosis, the RAS-ERK and AKT/FOXO3a signaling pathways were assessed using western blot. Potential targets of TMOCC were detected using molecular docking analysis. Results : TMOCC inhibited viability and proliferation, and induced the loss of mitochondrial transmembrane potential, apoptosis and DNA double-strand breaks in both HCC cells. The RAS-ERK and AKT/FOXO3a signaling pathways were suppressed by TMOCC. Finally, ERK1, PARP-1, and BAX were identified as potential targets of TMOCC. Conclusion : Taken together, our results show that TMOCC promotes apoptosis by suppressing the RAS-ERK and AKT/FOXO3a signaling pathways. TMOCC may be a potential multi-target compound that is effective against liver cancer.  相似文献   

14.
Abstract

Context: Pathological upregulation of the RAS/MAPK pathway causes Costello, Noonan and cardio–facio–cutaneous (CFC) syndrome; however, little is known about PI3K/AKT signal transduction in these syndromes. Previously, we found a novel mutation of the SOS1 gene (T158A) in a patient with Costello/CFC overlapping phenotype. Objective: The aim of this study was to investigate how this mutation affects RAS/MAPK as well as PI3K/AKT pathway signal transduction.

Materials and methods: Wild-type and mutant (T158A) Son of Sevenless 1 (SOS1) were transfected into 293T cells. The levels of phospho- and total ERK1/2, AKT, p70S6K and pS6 were examined under epidermal growth factor (EGF) stimulation. Results: After EGF stimulation, the ratio of phospho-ERK1/2 to total ERK1/2 was highest at 5?min in mutant (T158A) SOS1 cells, and at 15?min in wild-type SOS1 cells. Phospho-AKT was less abundant at 60?min in mutant than in wild-type SOS1 cells. Phosphorylation at various sites in p70S6K differed between wild-type and mutant cells. Eighteen hours after activation by EGF, the ratio of phospho-ERK1/2 to total ERK1/2 remained significantly higher in mutant than in wild-type SOS1 cells, but that of phospho-AKT to total AKT was unchanged. Discussion: T158A is located in the histone-like domain, which may have a role in auto-inhibition of RAS exchanger activity of SOS1. T158A may disrupt auto-inhibition and enhance RAS signaling. T158A also affects PI3K/AKT signaling, probably via negative feedback via phospho-p70S6K. Conclusion: The SOS1 T158A mutation altered the phosphorylation of gene products involved in both RAS/MAPK and PI3K/AKT pathways.  相似文献   

15.
The Reperfusion Injury Salvage Kinase (RISK) pathway is considered the main pro‐survival kinase cascade mediating the ischaemic preconditioning (IPC) cardioprotective effect. To assess the role of PI3K‐Akt, its negative regulator PTEN and other pro‐survival proteins such as ERK and STAT3 in the context of IPC, C57BL/6 mouse hearts were retrogradely perfused in a Langendorff system and subjected to 4 cycles of 5 min. ischaemia and 5 min. reperfusion prior to 35 min. of global ischaemia and 120 min. of reperfusion. Wortmannin, a PI3K inhibitor, was administered either at the stabilization period or during reperfusion. Infarct size was assessed using triphenyl tetrazolium staining, and phosphorylation levels of Akt, PTEN, ERK, GSK3β and STAT3 were evaluated using Western blot analyses. IPC reduced infarct size in hearts subjected to lethal ischaemia and reperfusion, but this effect was lost in the presence of Wortmannin, whether it was present only during preconditioning or only during early reperfusion. IPC increased the levels of Akt phosphorylation during both phases and this effect was fully abrogated by PI3K, whilst its downstream GSK3β was phosphorylated only during the trigger phase after IPC. Both PTEN and STAT3 were phosphorylated during both phases after IPC, but this was PI3K independent. IPC increases ERK phosphorylation during both phases, being only PI3K‐dependent during the IPC phase. In conclusion, PI3K‐Akt plays a major role in IPC‐induced cardioprotection. However, PTEN, ERK and STAT3 are also phosphorylated by IPC through a PI3K‐independent pathway, suggesting that cardioprotection is mediated through more than one cell signalling cascade.  相似文献   

16.
Breast cancer (BC) is a common malignancy which is the most frequently diagnosed cancer in women all over the worldwide. This study aimed to investigate the roles of miR-1469 in the development of BC, as well as its regulatory mechanism. The expression levels of miR-1469 in BC tissues, serum, and cell lines were determined. Effects of overexpression of miR-1469 on MCF7 cell viability, colony-forming ability, apoptosis, migration, and invasion were then investigated. Furthermore, the potential target of miR-1469 in MCF7 cells was explored. Besides, the association between miR-1469, PTEN/PI3K/AKT, and Wnt/β-catenin pathways was elucidated. Notably, confirmatory experiments by downregulation of miR-1469 in SK-BR-3 cells were further performed. The miR-1469 expression was significantly downregulated in BC tissues, serum, and cell lines. The overexpression of miR-1469 significantly inhibited the proliferation, arrested cell-cycle at G2/M phase, increased apoptosis, suppressed migration, and invasion of MCF-7 cells. In addition, HOXA1 was verified as a direct target of miR-1469, and the effects of overexpression of miR-1469 on the malignant behaviors of MCF7 cells were significantly counteracted by overexpression of HOXA1 concurrently. Furthermore, the overexpression of miR-1469 suppressed the activation of PTEN/PI3K/AKT and Wnt/β-catenin pathways, which was reversed overexpression of HOXA1 concurrently. Besides, confirmatory experiments showed that the inhibition of miR-1469 promoted the malignant behaviors of SK-BR-3 cells, which was inversed after miR-1469 inhibition and HOXA1 knockdown at the same time. Our findings reveal that downregulation of miR-1469 may promote the development of BC by targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β-catenin pathways. MiR-1469 may serve as a promising target for BC therapy.  相似文献   

17.
Lung cancer is the leading cause of cancer-related mortality worldwide due to its early asymptomatic and late metastasis. While cancer stem cells (CSCs) may play a vital role in oncogenesis and development of lung cancer, mechanisms underlying CSCs self‐renewal remain less clear. In the present study, we constructed a clinically relevant CSCs enrichment recognition model and evaluated the potential functions of phosphatidylinositol 3-kinase (PI3K)/AKT pathway (PI3K/AKT) and mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathways in lung cancer via bioinformatic analysis, providing the basis for in depth mechanistic inquisition. Experimentally, we confirmed that PI3K/AKT pathway predominantly promotes proliferation through anti-apoptosis in lung adenocarcinoma cells, while MAPK/ERK pathway has an overwhelming superiority in regulating the proliferation in lung CSCs. Further, utilizing stemness score model, LLC-Symmetric Division (LLC-SD) cells and mouse orthotopic lung transplantation model, we elucidated an intricate cross-talk between the oncogenic pathway and the stem cell reprograming pathway that impact stem cell characteristics as well as cancer biology features of lung CSCs both in vitro and in vivo. In summary, our findings uncovered a new insight that PI3K/AKT and MAPK/ERK pathways as oncogenic signaling pathway and/or stem cell signaling pathway act distinctively and synergistically to regulate lung CSCs self-renewal.  相似文献   

18.
The complex N-glycan structures on glycoproteins play important roles in cell adhesion and recognition events in metazoan organisms. A critical step in the biosynthetic pathway leading from high mannose to these complex structures includes the transfer of N-acetylglucosamine (GlcNAc) to a mannose residue by the inverting N-acetylglucosaminyltransferase I (GnT-I). The catalytic mechanism of this enzymatic reaction is explored herein using DFT quantum chemical methods. The computational model used to follow the reaction is based on the X-ray crystallographic structure of GnT-I and contains 127 atoms that represent fragments of residues critical for the substrate binding and catalysis. The mechanism of the catalytic reaction was monitored by means of a 2D potential energy map calculated as a function of predefined reaction coordinates at the B3LYP/6-31G** level. This potential energy surface revealed one transition state associated with a reaction pathway following a concerted mechanism. The reaction barrier was estimated, and the structure of the transition state was characterized at the B3LYP/6-311++G**// B3LYP/6-31G** level.  相似文献   

19.
目的:探究Rab11a在胰腺癌中的表达模式及其对肿瘤生长和转移的影响.方法:通过免疫组织化学法、RT-PCR和Western blot检测60例胰腺癌患者的癌组织和癌旁组织中Rab11a的表达.通过对人胰腺癌细胞系PANC1转染靶向Rab11a的小干扰RNA或过表达Rab11a的pcDNA3.1质粒考察Rab11a对细...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号