首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3 D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3 D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.  相似文献   

2.
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.  相似文献   

3.
4.
Angiogenesis is a crucial process for the maintenance of normal tissue physiology and it is involved in tissue remodeling and regeneration. This process is essential for adipose tissue maintenance. The adipose tissue is composed by different cell types including stromal vascular cells as well as adipose stem cells (ASCs). In particular, ASCs are multipotent somatic stem cells that are able to differentiate and secrete several growth factors; they are recently emerging as a new cell reservoir for novel therapies and strategies in many diseases. Several studies suggest that ASCs have peculiar properties and participate in different disease-related processes such as angiogenesis. Furthermore, pathological expansion of adipose tissue brings to hypoxia, a major condition of unhealthy angiogenesis.Recent evidences have shown that microRNAs (miRNAs) play a crucial role also on ASCs as they take part in stemness maintenance, proliferation, and differentiation. It has been suggested that some miRNAs (MIR126, MIR31, MIR221 MIR222, MIR17-92 cluster, MIR30, MIR100 and MIR486) are directly involved in the angiogenic process by controlling multiple genes involved in this pathway. With the present review, we aim at providing an updated summary of the importance of adipose tissue under physiological and pathological conditions and of its relationship with neovascularization process. In particular, we report an overview of the most important miRNAs involved in angiogenesis focusing on ASCs. Hopefully the data presented will bring benefit in developing new therapeutic strategies.  相似文献   

5.
Background information. DMD (Duchenne muscular dystrophy) is a devastating X‐linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose‐derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X‐linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co‐cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)‐positive ASCs and DAPI (4′,6‐diamidino‐2‐phenylindole)‐stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.  相似文献   

6.
7.
Increasing evidence has suggested cancer stem cells (CSCs) are considered to be responsible for cancer formation, recurrence, and metastasis. Recently, many studies have also revealed that microRNAs (miRNAs) strongly implicate in regulating self renewal and tumorigenicity of CSCs in human cancers. However, with respect to colon cancer, the role of miRNAs in stemness maintenance and tumorigenicity of CSCs still remains to be unknown. In the present study, we isolated a population of colon CSCs expressing a CD133 surface phenotype from human HT29 colonic adenocarcinoma cell line by Flow Cytometry Cell Sorting. The CD133+ cells possess a greater tumor sphere-forming efficiency in vitro and higher tumorigenic potential in vivo. Furthermore, the CD133+ cells are endowed with stem/progenitor cells-like property including expression of “stemness” genes involved in Wnt2, BMI1, Oct3/4, Notch1, C-myc and other genes as well as self-renewal and differentiation capacity. Moreover, we investigated the miRNA expression profile of colon CSCs using miRNA array. Consequently, we identified a colon CSCs miRNA signature comprising 11 overexpressed and 8 underexpressed miRNAs, such as miR-429, miR-155, and miR-320d, some of which may be involved in regulation of stem cell differentiation. Our results suggest that miRNAs might play important roles in stemness maintenance of colon CSCs, and analysis of specific miRNA expression signatures may contribute to potential cancer therapy.  相似文献   

8.
9.
Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.  相似文献   

10.
Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.  相似文献   

11.
Adipose tissue is composed of lipid‐filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose‐derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA‐abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7‐fold vs. 2.85‐fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT‐PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage‐specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine. J. Cell. Physiol. 226: 843–851, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
In recent years, studies of cancer development and recurrence have been influenced by the cancer stem cells (CSCs)/cancer-initiating cells (CICs) hypothesis. According to this, cancer is sustained by highly positioned, chemoresistant cells with extensive capacity of self renewal, which are responsible for disease relapse after chemotherapy. Growth of cancer cells as three-dimensional non-adherent spheroids is regarded as a useful methodology to enrich for cells endowed with CSC-like features. We have recently reported that cell cultures derived from malignant pleural effusions (MPEs) of patients affected by adenocarcinoma of the lung are able to efficiently form spheroids in non-adherent conditions supplemented with growth factors. By expression profiling, we were able to identify a set of genes whose expression is significantly upregulated in lung tumor spheroids versus adherent cultures. One of the most strongly upregulated gene was stearoyl-CoA desaturase (SCD1), the main enzyme responsible for the conversion of saturated into monounsaturated fatty acids. In the present study, we show both by RNA interference and through the use of a small molecule inhibitor that SCD1 is required for lung cancer spheroids propagation both in stable cell lines and in MPE-derived primary tumor cultures. Morphological examination and image analysis of the tumor spheroids formed in the presence of SCD1 inhibitors showed a different pattern of growth characterized by irregular cell aggregates. Electron microscopy revealed that the treated spheroids displayed several features of cellular damage and immunofluorescence analysis on optical serial sections showed apoptotic cells positive for the M30 marker, most of them positive also for the stemness marker ALDH1A1, thus suggesting that the SCD1 inhibitor is selectively killing cells with stem-like properties. Furthermore, SCD1-inhibited lung cancer cells were strongly impaired in their in vivo tumorigenicity and ALDH1A1 expression. These results suggest that SCD1 is a critical target in lung cancer tumor-initiating cells.  相似文献   

13.
In recent decades, mesenchymal stem cells originated from adipose tissue (adipose-derived stem cells, ASCs) have gained increased attention for production of cell-based therapeutics. Emu oil as a natural compound showed antioxidant effects in previous studies. The goal of this study was to investigate the effect of crude emu oil on the proliferation, cell cycle progression, stemness genes expression, and in vitro wound healing potential of ASCs. An emulsion of emu oil was prepared using egg lecithin and butylated hydroxytoluene to improve bioavailability and solubility of emu oil in the expansion medium. The ASCs were treated using a series of emu oil concentrations in emulsion form, diluted in expansion medium (0.03–3 mg/ml). The emu oil-free emulsion was used as control treatment. The results revealed that emu oil (1.25 mg/ml) in emulsion form significantly (p?<?0.001) increased ASCs proliferation and colony formation. Additionally, emu oil caused upregulation of stemness marker genes (Sox2, Oct4, Nanog, and Nestin) (p?<?0.05). The cell cycle analysis after emu oil treatments showed an increase in the population of ASCs in S-phase of the cell cycle. Besides, an accelerated in vitro scratch wound healing was observed in emu oil-treated ASCs. Emu oil enhanced proliferation, colony formation, stemness genes expression, and in vitro wound healing of ASCs. These findings suggest that emu oil treatment could maintain the stemness of ex vivo cultivated ASCs and enhance their regenerative potential.  相似文献   

14.
There have been many clinical trials recently using ex vivo‐expanded human mesenchymal stem cells (MSCs) to treat several disease states such as graft‐versus‐host disease, acute myocardial infarction, Crohn's disease, and multiple sclerosis. The use of MSCs for therapy is expected to become more prevalent as clinical progress is demonstrated. However, the conventional 2‐dimensional (2D) culture of MSCs is laborious and limited in scale potential. The large dosage requirement for many of the MSC‐based indications further exacerbates this manufacturing challenge. In contrast, expanding MSCs as spheroids does not require a cell attachment surface and is amenable to large‐scale suspension cell culture techniques, such as stirred‐tank bioreactors. In the present study, we developed and optimized serum‐free media for culturing MSC spheroids. We used Design of Experiment (DoE)‐based strategies to systematically evaluate media mixtures and a panel of different components for effects on cell proliferation. The optimization yielded two prototype serum‐free media that enabled MSCs to form aggregates and proliferate in both static and dynamic cultures. MSCs from spheroid cultures exhibited the expected immunophenotype (CD73, CD90, and CD105) and demonstrated similar or enhanced differentiation potential toward all three lineages (osteogenic, chondrogenic, adipogenic) as compared with serum‐containing adherent MSC cultures. Our results suggest that serum‐free media for MSC spheroids may pave the way for scale‐up production of MSCs in clinically relevant manufacturing platforms such as stirred tank bioreactors. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:974–983, 2014  相似文献   

15.
The recent identification of a mesenchymal stem cell population in adipose tissue has led to an abundance of research focused on the regenerative properties of these cells. As such, adipose‐derived stem cells (ASCs) and potential therapies in craniofacial regeneration have been widely studied. This review will discuss the identification and potential of ASCs, and specifically, preclinical and clinical studies using ASCs in craniofacial repair. Studies involving ASCs in the repair of defects caused by craniosynostosis and Treacher Collins syndrome will be discussed. A comprehensive review of the literature will be presented, focusing on fat grafting and biomaterials‐based approaches that include ASCs for craniofacial regeneration. (Part C) 96:95–97, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
Human adipose-derived stem cells (hADSC) are capable of differentiating into an osteogenic lineage. It is believed that microRNAs (miRNAs) play important roles in regulating this osteogenic differentiation of human adipose-derived cells, although its molecular mechanism remains unclear. We investigated the miRNA expression profile during osteogenic differentiation of hADSCs, and assessed the roles of involved miRNAs during the osteogenic differentiation. We obtained and cultured human adipose-derived stems cells from donors who underwent elective liposuction or other abdominal surgery at our institution. miRNA expression profiles pre- and post-osteogenic induction were obtained using microarray essay, and differently expressed miRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The expression of osteogenic proteins was detected using an enzyme-linked immunosorbent assay. Putative targets of the miRNAs were predicted using online software MiRanda, TargetScan, and miRBase. Eight miRNAs were found differently expressed pre- and post-osteogenic induction, among which four miRNAs (miR-17, miR-20a, miR-20b, and miR-106a) were up-regulated and four miRNAs (miR-31, miR-125a-5p, miR-125b, and miR-193a) were down-regulated. qRT-PCR analysis further confirmed the results. Predicted target genes of the differentially expressed miRNAs based on the overlap from three public prediction algorithms: MiRanda, TargetScan, and miRBase Target have the known functions of regulating stem cell osteogenic differentiation, self-renewal, signal transduction, and cell cycle control. We identified a group of miRNAs that may play important roles in regulating hADSC cell differentiation toward an osteoblast lineage. Further study of these miRNAs may elucidate the mechanism of hADSC differentiation into adipose tissue, and thus provide basis for tissue engineering.  相似文献   

19.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

20.
Dicer is a cellular enzyme required for the processing of pre‐miRNA molecules into mature miRNA, and Dicer and miRNA biogenesis have been found to play important roles in a variety of physiologic processes. Recently, reports of alterations in miRNA expression levels in cultured pre‐adipogenic cell lines during differentiation and findings of differences between the miRNA expression signatures of white and brown adipose have suggested that miRNA molecules might regulate adipocyte differentiation and the formation of adipose tissue. However, direct evidence that miRNAs regulate adipogenesis is lacking. To determine if Dicer and mature miRNA govern adipocyte differentiation, we utilized primary cells isolated from mice bearing Dicer‐conditional alleles to study adipogenesis in the presence or absence of miRNA biogenesis. Our results reveal that Dicer is required for adipogenic differentiation of mouse embryonic fibroblasts and primary cultures of pre‐adipocytes. Furthermore, the requirement for Dicer in adipocyte differentiation is not due to miRNA‐mediated alterations in cell proliferation, as deletion of the Ink4a locus and the prevention of premature cellular senescence normally induced in primary cells upon Dicer ablation fails to rescue adipogenic differentiation in fibroblasts and pre‐adipocytes. J. Cell. Biochem. 110: 812–816, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号