首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the first site-directed mutagenesis analysis of any cytochrome c6, a heme protein that performs the same function as the copper-protein plastocyanin in the electron transport chain of photosynthetic organisms. Photosystem I reduction by the mutants of cytochrome c6 from the cyanobacterium Synechocystis sp. PCC 6803 has been studied by laser flash absorption spectroscopy. Their kinetic efficiency and thermodynamic properties have been compared with those of plastocyanin mutants from the same organism. Such a comparative study reveals that aspartates at positions 70 and 72 in cytochrome c6 are located in an acidic patch that may be isofunctional with the well known "south-east" patch of plastocyanin. Calculations of surface electrostatic potential distribution in the mutants of cytochrome c6 and plastocyanin indicate that the changes in protein reactivity depend on the surface electrostatic potential pattern rather than on the net charge modification induced by mutagenesis. Phe-64, which is close to the heme group and may be the counterpart of Tyr-83 in plastocyanin, does not appear to be involved in the electron transfer to photosystem I. In contrast, Arg-67, which is at the edge of the cytochrome c6 acidic area, seems to be crucial for the interaction with the reaction center.  相似文献   

2.
Cytochrome c (cyt) and zinc cytochrome c (Zncyt) are separately cross-linked to plastocyanin (pc) by the carbodiimide EDC according to a published method. The changes in the protein reduction potentials indicate the presence of approximately two amide cross-links. Chromatography of the diprotein complexes cyt/pc and Zncyt/pc on CM-52 resin yields multiple fractions, whose numbers depend on the eluent. UV-vis, EPR, CD, MCD, resonance Raman, and surface-enhanced resonance Raman spectra show that cross-linking does not significantly perturb the heme and blue copper active sites. Degrees of heme exposure show that plastocyanin covers most of the accessible heme edge in cytochrome c. Impossibility of cross-linking cytochrome c to a plastocyanin derivative whose acidic patch had been blocked by chemical modification shows that it is the acidic patch that abuts the heme edge in the covalent complex. The chromatographic fractions of the covalent diprotein complex are structurally similar to one another and to the electrostatic diprotein complex. Isoelectric points show that the fractions differ from one another in the number and distribution of N-acylurea groups, byproducts of the reaction with the carbodiimide. Cytochrome c and plastocyanin are also tethered to each other via lysine residues by N-hydroxysuccinimide diesters. Tethers, unlike direct amide bonds, allow mobility of the cross-linked molecules. Laser-flash-photolysis experiments show that, nonetheless, the intracomplex electron-transfer reaction cyt(II)/pc(II)----cyt(III)/pc(I) is undetectable in complexes of either type. Only the electrostatic diprotein complex, in which protein rearrangement from the docking configuration to the reactive configuration is unrestricted, undergoes this intracomplex reaction at a measurable rate.  相似文献   

3.
The reduction of plastocyanin by cytochromes c and f has been investigated with mutants of spinach plastocyanin in which individual, highly conserved surface residues have been modified. These include Leu-12 and Phe-35 in the 'northern' hydrophobic patch and Tyr-83 and Asp-42 in the 'eastern' acidic patch. The differences observed all involved binding rather than the intrinsic rates of electron transfer. The Glu-12 and Ala-12 mutants showed small but significant decreases in binding constant with cytochrome c, even though the cytochrome is not expected to make contact with the northern face of plastocyanin. These results, and small changes in the EPR parameters, suggested that these mutations cause small conformational changes in surface residues on the eastern face of plastocyanin, transmitted through the copper centre. In the case of cytochrome f, the Glu-12 and Ala-12 mutants also bound less strongly, but Leu12Asn showed a marked increase in binding constant, suggesting that cytochrome f can hydrogen bond directly to Asn-12 in the reaction complex. A surprising result was that the kinetics of reduction of Asp42Asn were not significantly different from wild type, despite the loss of a negative charge.  相似文献   

4.
A number of surface residues of cytochrome c(6) from the cyanobacterium Anabaena sp. PCC 7119 have been modified by site-directed mutagenesis. Changes were made in six amino acids, two near the heme group (Val-25 and Lys-29) and four in the positively charged patch (Lys-62, Arg-64, Lys-66, and Asp-72). The reactivity of mutants toward the membrane-anchored complex photosystem I was analyzed by laser flash absorption spectroscopy. The experimental results indicate that cytochrome c(6) possesses two areas involved in the redox interaction with photosystem I: 1) a positively charged patch that may drive its electrostatic attractive movement toward photosystem I to form a transient complex and 2) a hydrophobic region at the edge of the heme pocket that may provide the contact surface for the transfer of electrons to P(700). The isofunctionality of these two areas with those found in plastocyanin (which acts as an alternative electron carrier playing the same role as cytochrome c(6)) are evident.  相似文献   

5.
The interaction between plastocyanin and the intact cytochrome bf complex, both from spinach, has been studied by stopped-flow kinetics with mutant plastocyanin to elucidate the site of electron transfer and the docking regions of the molecule. Mutation of Tyr-83 to Arg or Leu provides no evidence for a second electron transfer path via Tyr-83 of plastocyanin, which has been proposed to be the site of electron transfer from cytochrome f. The data found with mutations of acidic residues indicate that both conserved negative patches are essential for the binding of plastocyanin to the intact cytochrome bf complex. Replacing Ala-90 and Gly-10 at the flat hydrophobic surface of plastocyanin by larger residues slowed down and accelerated, respectively, the rate of electron transfer as compared with wild-type plastocyanin. These opposing effects reveal that the hydrophobic region around the electron transfer site at His-87 is divided up into two regions, of which only that with Ala-90 contributes to the attachment to the cytochrome bf complex. These binding sites of plastocyanin are substantially different from those interacting with photosystem I. It appears that each of the two binding regions of plastocyanin is split into halves, which are used in different combinations in the molecular recognition at the two membrane complexes.  相似文献   

6.
In cyanobacteria, plastocyanin and cytochrome c6 are two soluble metalloproteins which can alternately serve as electron donors to photosystem I. From site-directed mutagenesis studies in vitro, it is well-established that both hydrophobic and electrostatic forces are involved in the interaction between the donor proteins and photosystem I. Hence, two isofunctional areas, a hydrophobic one in the north and an acidic one in the east, have been described on the surface of both electron donors. In this work, we have tested the relevance of such kinds of interactions in the photosystem I reduction inside the cell. Several plastocyanin and cytochrome c6 site-directed mutant strains affecting both the acidic and hydrophobic regions of the two metalloproteins, which were previously characterized in vitro, have been constructed. The photosystem I reduction kinetics of the different mutants have been analyzed by laser flash absorption spectroscopy. Relevant differences have been found between the in vitro and in vivo results, mainly regarding the role played by the electrostatic interactions. Adding positive electrostatic charges to the acidic patch of plastocyanin and cytochrome c6 promotes an enhanced interaction with photosystem I in vitro but yields the opposite effect in vivo. These discrepancies are discussed in view of the different environmental conditions, in vitro and in vivo, for the reaction mechanism of photosystem I reduction, namely, differential interaction of the electron donors with the thylakoidal membrane and kinetics of donor exchange.  相似文献   

7.
The orientation of poplar plastocyanin in the complex with turnip cytochrome f has been determined by rigid-body calculations using restraints from paramagnetic NMR measurements. The results show that poplar plastocyanin interacts with cytochrome f with the hydrophobic patch of plastocyanin close to the heme region on cytochrome f and via electrostatic interactions between the charged patches on both proteins. Plastocyanin is tilted relative to the orientation reported for spinach plastocyanin, resulting in a longer distance between iron and copper (13.9 A). With increasing ionic strength, from 0.01 to 0.11 M, all observed chemical-shift changes decrease uniformly, supporting the idea that electrostatic forces contribute to complex formation. There is no indication for a rearrangement of the transient complex in this ionic strength range, contrary to what had been proposed earlier on the basis of kinetic data. By decreasing the pH from pH 7.7 to pH 5.5, the complex is destabilized. This may be attributed to the protonation of the conserved acidic patches or the copper ligand His87 in poplar plastocyanin, which are shown to have similar pK(a) values. The results are interpreted in a two-step model for complex formation.  相似文献   

8.
The complex between cytochrome f and plastocyanin from the cyanobacterium Nostoc has been characterized by NMR spectroscopy. The binding constant is 16 mM(-1), and the lifetime of the complex is much less than 10 ms. Intermolecular pseudo-contact shifts observed for the plastocyanin amide nuclei, caused by the heme iron, as well as the chemical-shift perturbation data were used as the sole experimental restraints to determine the orientation of plastocyanin relative to cytochrome f with a precision of 1.3 angstroms. The data show that the hydrophobic patch surrounding tyrosine 1 in cytochrome f docks the hydrophobic patch of plastocyanin. Charge complementarities are found between the rims of the respective recognition sites of cytochrome f and plastocyanin. Significant differences in the relative orientation of both proteins are found between this complex and those previously reported for plants and Phormidium, indicating that electrostatic and hydrophobic interactions are balanced differently in these complexes.  相似文献   

9.
Positively charged plastocyanin from Anabaena sp. PCC 7119 was investigated by site-directed mutagenesis. The reactivity of its mutants toward photosystem I was analyzed by laser flash spectroscopy. Replacement of arginine at position 88, which is adjacent to the copper ligand His-87, by glutamine and, in particular, by glutamate makes plastocyanin reduce its availability for transferring electrons to photosystem I. Such a residue in the copper protein thus appears to be isofunctional with Arg-64 (which is close to the heme group) in cytochrome c(6) from Anabaena (Molina-Heredia, F. P., Diaz-Quintana, A., Hervás, M., Navarro, J. A., and De la Rosa, M. A. (1999) J. Biol. Chem. 274, 33565-33570) and Synechocystis (De la Cerda, B., Diaz-Quintana, A., Navarro, J. A. , Hervás, M., and De la Rosa, M. A. (1999) J. Biol. Chem. 274, 13292-13297). Other mutations concern specific residues of plastocyanin either at its positively charged east face (D49K, H57A, H57E, K58A, K58E, Y83A, and Y83F) or at its north hydrophobic pole (L12A, K33A, and K33E). Mutations altering the surface electrostatic potential distribution allow the copper protein to modulate its kinetic efficiency: the more positively charged the interaction site, the higher the rate constant. Whereas replacement of Tyr-83 by either alanine or phenylalanine has no effect on the kinetics of photosystem I reduction, Leu-12 and Lys-33 are essential for the reactivity of plastocyanin.  相似文献   

10.
Spinach plastocyanin was selectively modified using tetranitromethane which incorporates a nitro group ortho to the hydroxyl group of tyrosine 83 (Anderson, G.P., Draheim, J.E. and Gross, E.L. (1985) Biochim. Biophys. Acta 810, 123-131). This tyrosine residue has been postulated to be part of the cytochrome f binding site on plastocyanin. Since the hydroxyl moiety of nitrotyrosine 83 is deprotonated above its pK of 8.3, it provides a useful modification for studying the effect of an extra negative charge on the interaction of plastocyanin with cytochrome f. No effect on cytochrome f oxidation was observed at pH 7 under conditions in which the hydroxyl moiety is protonated. However, the rate of cytochrome f oxidation increased at pH values greater than 8, reaching a maximum at pH 8.6 and decreasing at still higher pH values. The increase was half-maximal at pH 8.3 which is the pK for the hydroxyl moiety on nitrotyrosine 83. In contrast, the rate of cytochrome f oxidation for control plastocyanin was independent of pH from pH 7 to 8.6. These results show that increasing the negative charge on plastocyanin at Tyr-83 increases the ability to react with cytochrome f, supporting the hypothesis that cytochrome f interacts with plastocyanin at this location. In contrast, the reaction of Ntyr-83 plastocyanin with mammalian cytochrome c was independent of pH, suggesting that its mode of interaction with plastocyanin is different from that of cytochrome f. A comparison of the effects of Ntyr-83 modification of plastocyanin with the carboxyl- and amino-group modifications reported previously suggests that plastocyanin binds to cytochrome f in such a way that electrons could be donated to plastocyanin at either of its two binding sites.  相似文献   

11.
The role of electrostatic interactions in determining the rate of electron transfer between cytochrome f and plastocyanin has been examined in vitro with mutants of turnip cytochrome f and mutants of pea and spinach plastocyanins. Mutation of lysine residues Lys58, Lys65 and Lys187 of cytochrome f to neutral or acidic residues resulted in decreased binding constants and decreased rates of electron transfer to wild-type pea plastocyanin. Interaction of the cytochrome f mutant K187E with the pea plastocyanin mutant D51K gave a further decrease in electron transfer rate, indicating that a complementary charge pair at these positions could not compensate for the decreased overall charge on the proteins. Similar results were obtained with the interaction of the cytochrome f mutant K187E with single, double and triple mutants of residues in the acidic patches of spinach plastocyanin. These results suggest that the lysine residues of the basic patch on cytochrome f are predominantly involved in long-range electrostatic interactions with plastocyanin. However, analysis of the data using thermodynamic cycles provided evidence for the interaction of Lys187 of cytochrome f with Asp51, Asp42 and Glu43 of plastocyanin in the complex, in agreement with a structural model of a cytochrome f-plastocyanin complex determined by NMR.  相似文献   

12.
Kinetic studies on a cross-linked complex between plastocyanin cytochrome f   总被引:2,自引:0,他引:2  
A cross-linked complex between plastocyanin and cytochrome f was prepared by incubation in the presence of a water soluble carbodiimide and its kinetic properties were studied. The optical spectra, oxidation-reduction potentials and isoelectric pH of plastocyanin and cytochrome f did not change upon the formation of the cross-linked complex. Studies on the ionic strength effect on the electron transfer rate from cross-linked plastocyanin to ferricyanide indicated that the negative charge on the reaction site of plastocyanin was masked upon the cross-linking. It was also suggested that the sign of the net charge near the cytochrome f heme edge changed from positive to negative upon the cross-linking. On the other hand, electrostatic interactions between cross-linked plastocyanin and P700 seemed to be essentially the same as those in the case of native plastocyanin, although the rate of electron transfer from cross-linked plastocyanin to P700 was severely reduced. We also measured the intra-complex electron transfer from cytochrome f to plastocyanin. This suggested that the covalently cross-linked complex is a valid model of the electron transfer encounter complex. Based on these results, the reaction sites of plastocyanin with P700 and cytochrome f were discussed.  相似文献   

13.
To illustrate the functions of the aromatic residue Phe35 of cytochrome b(5) and to give further insight into the roles of the Phe35-containing hydrophobic patch and/or aromatic channel of cytochrome b(5), we studied electron transfer reactions of cytochrome b(5) and its Phe35Tyr and Phe35Leu variants with cytochrome c, with the wild-type and Tyr83Phe and Tyr83Leu variants of plastocyanin, and with the inorganic complexes [Fe(EDTA)](-), [Fe(CDTA)](-) and [Ru(NH(3))(6)](3+). The changes at Phe35 of cytochrome b(5) and Tyr83 of plastocyanin do not affect the second-order rate constants for the electron transfer reactions. These results show that the invariant aromatic residues and aromatic patch/channel are not essential for electron transfer in these systems.  相似文献   

14.
The plastocyanin-cytochrome f complex from Nostoc exhibits relevant structural differences when compared with the homologous complexes from other cyanobacteria and plants, with electrostatic and hydrophobic interactions being differently involved in each case. Here, five negatively charged residues of a recombinant form of cytochrome f from Nostoc have been replaced with either neutral or positively charged residues, and the effects of mutations on the kinetics of electron transfer to wild-type and mutant forms of plastocyanin have been measured by laser flash absorption spectroscopy. Cytochrome f mutants with some negative charges replaced with neutral residues exhibit an apparent electron transfer rate constant with wild-type plastocyanin similar to or slightly higher than that of the wild-type species, whereas the mutants with negative charges replaced with positive residues exhibit a significantly lower reactivity. Taken together, these results indicate that the effects of neutralizing residues at the electrostatically charged patch of cytochrome f are smaller than those previously observed for mutants of plastocyanin, thus suggesting that it is the copper protein which determines the specificity of the electrostatic interaction with the heme protein. Moreover, cross reactions between mutants of both proteins reveal the presence of some short-range specific electrostatic interactions. Our findings also make evident the fact that in Nostoc the main contribution to the electrostatic nature of the complex is provided by the small domain of cytochrome f.  相似文献   

15.
Steady-state kinetics for the reaction of Rhodobacter capsulatus bacterial cytochrome c peroxidase (BCCP) with its substrate cytochrome c(2) were investigated. The Rb. capsulatus BCCP is dependent on calcium for activation as previously shown for the Pseudomonas aeruginosa BCCP and Paracoccus denitrificans enzymes. Furthermore, the activity shows a bell-shaped pH dependence with optimum at pH 7.0. Enzyme activity is greatest at low ionic strength and drops off steeply as ionic strength increases, resulting in an apparent interaction domain charge product of -13. All cytochromes c(2) show an asymmetric distribution of surface charge, with a concentration of 14 positive charges near the exposed heme edge of Rb. capsulatus c(2) which potentially may interact with approximately 6 negative charges, localized near the edge of the high-potential heme of the Rb. capsulatus BCCP. To test this proposal, we constructed charge reversal mutants of the 14 positively charged residues located on the front face of Rb. capsulatus cytochrome c(2) and examined their effect on steady-state kinetics with BCCP. Mutated residues in Rb. capsulatus cytochrome c(2) that showed the greatest effects on binding and enzyme activity are K12E, K14E, K54E, K84E, K93E, and K99E, which is consistent with the site of electron transfer being located at the heme edge. We conclude that a combination of long-range, nonspecific electrostatic interactions as well as localized salt bridges between, e.g., cytochrome c(2) K12, K14, K54, and K99 with BCCP D194, D241, and D6, account for the observed kinetics.  相似文献   

16.
The effect of ionic strength on the rate constant for electron transfer has been used to determine the magnitude and charge sign of the net electrostatic potential which exists in close proximity to the sites of electron transfer on various c-type cytochromes. The negatively charged ferricyanide ion preferentially reacts at the positively charged exposed heme edge region on the front side of horse cytochrome c and Paracoccus cytochrome c2. In contrast, at low ionic strength, the positively charged cobalt phenanthroline ion interacts with the negatively charged back side of cytochrome c2, and at high ionic strength at a positively charged site on the front side of the cytochrome. With horse cytochrome c, over the ionic strength range studied, cobalt phenanthroline reacts only at a positively charged site which is probably not at the heme edge. These inorganic oxidants do not react at the relatively uncharged exposed heme edge sites on Azotobacter cytochrome c5 and Pseudomonas cytochrome c-551, but rather at a negatively charged site which is away from the heme edge. The results demonstrate that at least two electron-transferring sites on a single cytochrome can be functional, depending on the redox reactant used and the ionic strength. Electrostatic interactions between charge distributions on the cytochrome surface and the other reactant, or interactions involving uncharged regions on the protein(s), are critical in determining the preferred sites of electron transfer and reaction rate constants. When unfavorable electrostatic effects occur at a site near the redox center, less optimal sites at a greater distance can become kinetically important.  相似文献   

17.
A tetraheme cytochrome subunit bound to the photosynthetic reaction center (RC) of purple bacterium, Rubrivivax gelatinosus, interacts with two types of soluble electron donors, cytochromes c and high-potential iron-sulfur protein (HiPIP), at a binding domain in the vicinity of low-potential heme 1, the fourth heme from the special pair of bacteriochlorophyll. To clarify the mechanism of the interaction, the domain around heme 1 was examined using site-directed mutants that changed the surface charge in the region within 20 A from the heme edge. In the case of the interaction with soluble cytochrome c, a strong dependence on the sign of the introduced charge was observed in all mutants: positive charge inhibited the reaction rate, whereas additional negative charge accelerated it. This confirmed the electrostatic nature of the binding. Interaction with HiPIP was inhibited by a limited number of mutations at the close vicinity of heme 1, and no acceleration was observed (the effects of some mutations were independent of the sign of the introduced charge). The acidic residues which were critically important for the binding of cytochrome c showed much less contribution to the binding of HiPIP. The binding site for HiPIP appears to be mostly formed by uncharged and hydrophobic residues, occupying a significantly smaller area than the cytochrome-c-binding site. It is proposed that the docking of HiPIP to the RC in Rvi. gelatinosus is primarily controlled by hydrophobic contacts between protein surfaces, thus differing from the electrostatic mode of the RC-cytochrome c interaction.  相似文献   

18.
L P Pan  M Frame  B Durham  D Davis  F Millett 《Biochemistry》1990,29(13):3231-3236
A new technique has been developed to measure intracomplex electron transfer between cytochrome c and its redox partners. Cytochrome c derivatives labeled at single lysine amino groups with ruthenium bisbipyridine dicarboxybipyridine were prepared as previously described [Pan, L.P., Durham, B., Wolinska, J., & Millett, F. (1988) Biochemistry 27, 7180-7184]. Excitation of RuII with a short light pulse resulted in the formation of the excited-state RuII*, which rapidly transferred an electron to the ferric heme group to form FeII and RuIII. Aniline was included in the buffer to reduce RuIII to RuII, leaving the heme group in the ferrous state. This process was complete within the lifetime of the light pulse. When plastocyanin was present in the solution, electron transfer from the ferrous heme of cytochrome c to CuII in plastocyanin was observed. All of the ruthenium cytochrome c derivatives formed electrostatic complexes with plastocyanin at low ionic strength, allowing intracomplex electron-transfer rate constants to be measured. The rate constants for derivatives modified at the indicated lysines were as follows: Lys 13, 1920 s-1; Lys 8, 1480 s-1; Lys 7, 1340 s-1; Lys 86, 1020 s-1; Lys 25, 820 s-1; Lys 72, 800 s-1; Lys 27, 530 s-1. It is interesting that the derivative modified at lysine 13 at the top of the heme crevice had the largest rate constant, while lysine 27 at the right side of the heme crevice had the smallest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Furukawa Y  Ishimori K  Morishima I 《Biochemistry》2000,39(36):10996-11004
We have investigated photoinduced electron transfer (ET) reactions between zinc-substituted cytochrome P450cam (ZnP450) and several inorganic reagents by using the laser flash photolysis method, to reveal roles of the electrostatic interactions in the regulation of the ET reactions. The laser pulse irradiation to ZnP450 yielded a strong reductant, the triplet excited state of ZnP450, (3)ZnP450, which was able to transfer one electron to anionic redox partners, OsCl(6)(2-) and Fe(CN)(6)(3-), with formation of the porphyrin pi-cation radical, ZnP450(+). In contrast, the ET reactions from (3)ZnP450 to cationic redox partners, such as Ru(NH(3))(6)(3+) and Co(phen)(3)(3+), were not observed even in the presence of 100-fold excess of the oxidant. One of the possible interpretations for the preferential ET to the anionic redox partner is that the cationic patch on the P450cam surface, a putative interaction site for the anionic reagents, is located near the heme (less than 10 A from the heme edge), while the anionic surface is far from the heme moiety (more than 16 A from the heme edge), which would yield 8000-fold faster ET rates through the cationic patch. The ET rate through the anionic patch to the cationic partner would be substantially slower than that of the phosphorescence process in (3)ZnP450, resulting in no ET reactions to the cationic reagents. These results demonstrate that the asymmetrical charge distribution on the protein surface is critical for the ET reaction in P450cam.  相似文献   

20.
Chemical modification of plastocyanin was carried out using 4-chloro-3,5-dinitrobenzoic acid, which has the effect of replacing positive charges on amino groups with negatively charged carboxyl groups. Four singly-modified forms were obtained which were separated using anion exchange FPLC. The four forms were modified at the N-terminal valine and at lysines 54, 71 and 77. The rates of reaction with mammalian cytochrome c were increased for all four modified plastocyanins. In contrast, the rates of reaction with cytochrome f were inhibited for the forms modified at residues 1, 54 and 77, whereas no effect was observed for the form modified at residue 71. Modification had no effect on either the midpoint redox potential or the reaction with K3Fe(CN)6. These results are consistent with a model in which charged residues on plastocyanin located at or near the binding site for cytochrome f recognize the positively-charged binding site on cytochrome f. In contrast, charged residues located at points on plastocyanin distant from the cytochrome f binding site recognize the net negative charge on the cytochrome f molecule. Based on these considerations, Glu-68 may be within the interaction sphere of cytochrome f, suggesting that cytochrome f may donate electrons to plastocyanin at either Tyr-83 or His-87.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号