首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Biosorption of heavy metals by gram-positive, non-pathogenic and non-toxicogenic Paenibacillus polymyxa P13 was evaluated. Copper was chosen as a model element because it is a pollutant originated from several industries. An EPS (exopolysaccharide)-producing phenotype exhibited significant Cu(II) biosorption capacity. Under optimal assay conditions (pH 6 and 25 °C), the adsorption isotherm for Cu(II) in aqueous solutions obeyed the Langmuir model. A high q value (biosorption capacity) was observed with whole cells (qmax=112 mgCu g−1). EPS production was associated with hyperosmotic stress by high salt (1 M NaCl), which led to a significant increase in the biosorption capacity of whole cells (qmax=150 mgCu g−1). Biosorption capacity for Cu(II) of the purified EPS was investigated. The maximum biosorption value (q) of 1602 mg g−1 observed with purified EPS at 0.1 mg ml−1 was particularly promising for use in field applications.  相似文献   

2.
A cloning vector that could replicate in Paenibacillus polymyxa, P. azotofixans and Bacillus subtilis was constructed using two Staphylococcus aureus plasmids. The recombinant plasmid confers chloramphenicol and erythromycin resistance and contains unique restriction sites for PvuII and BclI. The stability of pRJ45 was analysed.  相似文献   

3.
Conversion of xylose to (R,R)-2,3-butanediol by Paenibacillus polymyxa in anaerobic batch and continuous cultures was increased by 39% and 52%, respectively, by increasing the growth temperatures from 30 to 39 °C. There was no effect of temperature when glucose was used as substrate. 39 mM (R,R)-2,3-butanediol, 65 mM ethanol, and 47 mM acetate were obtained from 100 mM xylose after 24 h batch culture at 39 °C. With 100 mM glucose and 100 mM xylose used together in a batch culture at 39 °C, all xylose was consumed after 24 h and 82 mM (R,R)-2,3-butanediol, 124 mM ethanol and 33 mM acetate were produced.  相似文献   

4.
The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h−1 (0.1 vvm).  相似文献   

5.
An integrated high-throughput screening (HTS) strategy was developed to screen large numbers of polymyxin E-producing mutants of Paenibacillus polymyxa. Various types of mutants were transferred onto the surfaces of solidified agar in 96-well microtiter plates, and then inoculated to 96-deep-well microtiter plates for micro-cultivation. The culture conditions were optimized for the production of polymyxin E. The supernatants from the micro-culture plates were transferred to 96-well bioassay microtiter plates containing Escherichia coli JM109 for high-throughput bioassay. By using this high-throughput screening (HTS) procedure, one best producer P. polymyxa PE 5.808 was identified from a large NTG mutated library with about 5,000 isolates. The volumetric productivity of polymyxin E of P. polymyxa PE 5.808 was 1,200 μg/ml in shake flasks, about 140% improvement compared with that of the wild type strain.  相似文献   

6.
Fusaricidin, a peptide antibiotic consisting of six amino acids, has been identified as a potential antifungal agent from Paenibacillus polymyxa. Here, we report the complete sequence of the fusaricidin synthetase gene (fusA) identified from the genome sequence of a rhizobacterium, P. polymyxa E681. The gene encodes a polypeptide consisting of six modules in a single open-reading frame. Interestingly, module six of FusA does not contain an epimerization domain, which suggests that the sixth amino acids of the fusaricidin analogs produced by P. polymyxa E681 may exist as an l-form, although all reported fusaricidins contain d-form alanines in their sixth amino acid residues. Alternatively, the sixth adenylation domain of the FusA may directly recognize the d-form alanine. The inactivation of fusA led to the complete loss of antifungal activity against Fusarium oxysporum. LC/MS analysis confirmed the incapability of fusaricidin production in the fusA mutant strain, thus demonstrating that fusA is involved in fusaricidin biosynthesis. Our findings suggested that FusA can produce more than one kind of fusaricidin, as various forms of fusaricidins were identified from P. polymyxa E681.  相似文献   

7.
A bacterial strain Paenibacillus polymyxa GS01 was isolated from the interior of the roots of Korean cultivars of ginseng (Panax ginseng C. A. Meyer). The cel44C-man26A gene was cloned from this endophytic strain. This 4,056-bp gene encodes for a 1,352-aa protein which, based on BLAST search homologies, contains a glycosyl hydrolase family 44 (GH44) catalytic domain, a fibronectin domain type 3, a glycosyl hydrolase family 26 (GH26) catalytic domain, and a cellulose-binding module type 3. The multifunctional enzyme domain GH44 possesses cellulase, xylanase, and lichenase activities, while the enzyme domain GH26 possesses mannanase activity. The Cel44C enzyme expressed in and purified from Escherichia coli has an optimum pH of 7.0 for cellulase and lichenase activities, but is at an optimum pH of 5.0 for xylanase and mannanase activities. The optimum temperature for enzymatic activity was 50°C for all substrates. No detectable enzymatic activity was detected for the Cel44C-Man26A mutants E91A and E222A. These results suggest that the amino acid residues Glu91 and Glu222 may play an important role in the glycosyl hydrolases activity of Cel44C-Man26A.  相似文献   

8.
Paenibacillus polymyxa strain JSa-9, a soil isolate that displayed antibacterial and antifungal activities in vitro, had been found to produce two types of antimicrobial substances. The two compounds were extracted from the fermentation broth of JSa-9 using ethyl acetate and subsequently purified by high performance liquid chromatography. By means of liquid chromatography-mass spectrometry and tandem mass spectrometry analysis, one of two antagonistic compounds was determined as di-n-butyl phthalate. And another was characterized as a mixture of related peptides of molecular masses of 883, 897, 911, 947, and 961 Da, with the most likely structure of them determined to be a cyclic depsipeptide with an unusual 15-guanidino-3-hydroxypentadecanoic acid moiety bound to a free amino group. These peptides were therefore members of the LI-F group of cyclic depsipeptides.  相似文献   

9.
Biodegradation of Reactive Blue 59 by isolated bacterial consortium PMB11   总被引:2,自引:0,他引:2  
Morphologically different, three bacterial strains, capable of decolorizing Reactive Blue 59 were isolated from dye effluent contaminated soil sample, collected from Ichalkaranji, India. The individual bacterial strains viz. Bacillus odysseyi SUK3, Morganella morganii SUK5 and Proteus sp. SUK7 decolorized Reactive Blue 59 (50 mg l(-1)) completely within 60, 30, 24 h, respectively, while the bacterial consortium PMB11 of these strains required 3 h for the complete decolorization. The decolorization was confirmed by UV-Vis spectroscopy. Further, the biodegradation of Reactive Blue 59 in to different metabolites was confirmed by High performance liquid chromatography and Fourier transform infrared spectroscopy analysis. Significant increase in the activity of aminopyrine N-demethylase (AND) in the individual as well consortium cells, obtained after decolorization showed involvement of AND in the decolorization process. Phytotoxicity studies, revealed the nontoxic nature of the degraded metabolites of Reactive Blue 59 indicating effectiveness of bacterial consortium PMB11 for the treatment of textile effluent containing Reactive Blue 59.  相似文献   

10.
Raza W  Makeen K  Wang Y  Xu Y  Qirong S 《Bioresource technology》2011,102(10):6095-6103
The optimization, purification and characterization of an extracellular polysaccharide (EPS) from a bacterium Paenibacillus polymyxa SQR-21 (SQR-21) were investigated. The results showed that SQR-21 produced one kind of EPS having molecular weight of 8.96 × 105 Da. The EPS was comprised of mannose, galactose and glucose in a ratio of 1.23:1.14:1. The ratio of monosaccharides and glucuronic acid was 7.5:1. The preferable culture conditions for EPS production were pH 6.5, temperature 30 °C for 96 h with yeast extract and galactose as best N and C sources, respectively. The maximum EPS production (3.44 g L−1) was achieved with galactose 48.5 g L−1, Fe3+ 242 μM and Ca2+ 441 μM. In addition, the EPS showed good superoxide scavenging, flocculating and metal chelating activities while moderate inhibition of lipid peroxidation and reducing activities were determined. These results showed the great potential of EPS produced by SQR-21 to be used in industry in place of synthetic compounds.  相似文献   

11.
The potential of recently isolated bacteria Paenibacillus larvae for the effective decolorization of Indigo carmine was evaluated. The effects of operational parameters (temperature, pH, dye concentration, shaking/non shaking) were tested. Maximum extent of decolorization was observed when the medium was incorporated with 10 g/l of yeast extract and peptone. Decolorization was strongly inhibited at non-shaken conditions as well as incorporation of inorganic sources (sodium nitrite and ammonium chloride) in the medium. Maximum decolorization was observed at 30°C (100%) and 40°C (92%) at 8 h of incubation. The LC-MS and NMR analysis confirms the oxidation of Indigo carmine .The primary degradation products were found to be Isatin sulfonic acid and anthranilicacid.  相似文献   

12.
Deng Y  Lu Z  Bi H  Lu F  Zhang C  Bie X 《Peptides》2011,32(9):1917-1923
Paenibacillus polymyxa JSa-9 had been found to produce five cyclic LI-F type antibiotics which were released into culture medium in accordance with our previous report. In this study, another three kinds of antagonistic compounds were extracted from P. polymyxa JSa-9 cell pellets and (or) spores by methanol. Using high performance liquid chromatography (HPLC) method, two antagonistic fractions were separated and collected from the methanol extract. One showed inhibition against Escherichia coli and Staphylococcus aureus, while the other was active against Aspergillus niger and S. aureus. By means of electrospray ionization mass spectroscopy (ESI-MS), infrared spectroscopy (IR), and amino acid analysis, two kinds of compounds from fraction B with molecular masses of 901 and 915 Da were characterized as the linear lipopeptide analogs of antibiotics LI-F04a and LI-F04b, respectively. Another antimicrobial substance from fraction A could be attributed to polymyxin B6.  相似文献   

13.
Microbial diversity is a major resource for biotechnological products and processes. Bacteria are the most dominant group of this diversity which produce a wide range of products of industrial significance. Paenibacillus polymyxa (formerly Bacillus polymyxa), a non pathogenic and endospore-forming Bacillus, is one of the most industrially significant facultative anaerobic bacterium. It occurs naturally in soil, rhizosphere and roots of crop plants and in marine sediments. During the last two decades, there has been a growing interest for their ecological and biotechnological importance, despite their limited genomic information. P. polymyxa has a wide range of properties, including nitrogen fixation, plant growth promotion, soil phosphorus solubilisation and production of exopolysaccharides, hydrolytic enzymes, antibiotics, cytokinin. It also helps in bioflocculation and in the enhancement of soil porosity. In addition, it is known to produce optically active 2,3-butanediol (BDL), a potentially valuable chemical compound from a variety of carbohydrates. The present review article aims to provide an overview of the various roles that these microorganisms play in the environment and their biotechnological potential.  相似文献   

14.
Different species of Paenibacillus are considered to be plant growth-promoting rhizobacteria (PGPR) due to their ability to repress soil borne pathogens, fix atmospheric nitrogen, induce plant resistance to diseases and/or produce plant growth-regulating substances such as auxins. Although it is known that indole-3-acetic acid (IAA) is the primary naturally occurring auxin excreted by Paenibacillus species, its transport mechanisms (auxin efflux carriers) have not yet been characterized. In this study, the auxin production of P. polymyxa and P. graminis, which are prevalent in the rhizospheres of maize and sorghum sown in Brazil, was evaluated. In addition, the gene encoding the Auxin Efflux Carrier (AEC) protein from P. polymyxa DSM36(T) was sequenced and used to determine if various strains of P. polymyxa and P. graminis possessed this gene. Each of the 68 P. polymyxa strains evaluated in this study was able to produce IAA, which was produced at concentrations varying from 1 to 17 microg/ml. However, auxin production was not detected in any of the 13 P. graminis strains tested in this study. Different primers were designed for the PCR amplification of the gene coding for the AEC in P. polymyxa, and the predicted protein of 319 aa was homologous to AEC from Bacillus amyloliquefaciens, B. licheniformis, and B. subtilis. However, no product was observed when these primers were used to amplify the genomic DNA of seven strains of P. graminis, which suggests that this gene is not present in this species. Moreover, none of the P. graminis genomes tested were homologous to the gene coding for AEC, whereas all of the P. polymyxa genomes evaluated were. This is the first study to demonstrate that the AEC protein is present in P. polymyxa genome.  相似文献   

15.
A bacterial strain, SCE2, identified as Bacillus polymyxa, produced an anti-microbial substance active against yeasts, fungi and different genera of Gram-positive and-negative bacteria, in liquid medium and in plate assays. This substance appeared to be an antibiotic different from the polymyxin group, mainly because of its action against the majority of Gram-positive bacteria tested and its lack of activity against Pseudomonas aeruginosa, a species usually killed by polymyxins. Preliminary characterization showed resistance to heat (65°C, 2 h), to proteases, trypsin, lysozyme, deoxyribonuclease I, ribonuclease A, phospholipase C, ethanol, acetone, chloroform, ether and to strong alkali treatment (2 M NaOH). The molecular weight was less than 3500. The B. polymyxa strain harboured a plasmid that did not correlate with antibiotic production; after curing experiments, a derivative strain, SCE2(46), was isolated that lacked the plasmid pES1, but showed the same inhibitory spectrum as the wild-type strain.  相似文献   

16.
Exopolysaccharides (EPS) synthesized by Paenibacillus polymyxa 1465 in the course of batch cultivation were proven to contain neutral and acidic fractions. EPS are heterogeneous polysaccharides, represented by a complex of macromolecules with molecular mass of 7 × 104 to 2 × 106 Da. The acidic component was shown to be predominant in EPS preparations isolated from bacteria cultivated on glucose, which corresponds to a higher viscosity of EPS water solutions. The exoglycans were shown to contain glucose, mannose, galactose, and uronic acids. Polyclonal rabbit antibodies against the isolated P. polymyxa 1465 EPS preparations were used in a comparative immunodiffusion analysis of a number of P. polymyxa strains.  相似文献   

17.
Rates of methane production by three anaerobic ciliates containing symbiotic methanogens (the marine Metopus contortus and Plagiopyla frontata, and the limnic Metopus palaeformis) were quantified. Hydrogen production by normal (containing active symbionts), aposymbiotic and BES-treated cells was also measured in the case of the marine species. Methanogenesis was closely coupled to host metabolism and growth; at maximum ciliate growth rates (20°C) each methanogen produced about 1 fmol CH4 per hour corresponding to about 7, 4 and 0.35 pmol per ciliate per hour for M. contortus, P. frontata and M. palaeformis, respectively. Normal cells produced traces of H2. Hydrogen production by BES-treated or aposymbiotic cells accounted for 75 and 45% of the methane production of normal M. contortus and P. frontata cells, respectively. However, it is possible that hydrogen production was partly inhibited in the absence of methanogens. Theoretical considerations suggest that hydrogen transfer is significant to the metabolism of larger anaerobic ciliates. Ciliates with methanogens produced CH4 under microaerobic conditions due to their ability to maintain an anoxic intracellular environment at low external oxygen tensions. Methanogenesis was still detectable at a pO2 of 0.63 kPa (3 %atm sat).  相似文献   

18.
An Enterobacter strain (GY-1) with high activity of decolorization of Reactive Black 5 (RB 5) was isolated from textile wastewater treating sludge. The kinetic characteristics of dye decolorization by the strain GY-1 were determined quantitatively using the diazo dye, RB 5. Effects of different operation parameters (inoculum size, pH, temperature and salinity) and various electron donors on decolorization of the azo dye by GY-1 were systematically investigated to reveal the primary factors that determine the performance of the azo dye decolorization. The decolorization of RB 5 was attributed to extracellular enzymes. A kinetic model was established giving the dependence of decolorization rate on cell mass concentration (first order). Decolorization rate increased with increasing temperature from 20 to 35 °C, which can be predicted by Arrhenius equation with the activation energy (Ea) of 8.50 kcal mol−1 and the frequency factor (A0) of 6.28 × 107 mg l g MLSS−1 h−1. Michaelis-Menten kinetics and Eadie-Hofstee plot were used to determine Vmax, 1.05 mg l−1 h−1 and Km, 24.06 mg l−1.  相似文献   

19.
Proteus vulgaris NCIM-2027 cells immobilized on Luffa cylindrica (Loofa) completely decolorized C.I. Reactive Blue 172 at 37 °C and pH 8.0 under 5-h static incubation with high total organic carbon (TOC) and chemical oxygen demand (COD) reduction. The repeated-batch decolorization experiments also indicate good reusability of the immobilized biocatalyst. Some oxidoreductive enzymes were shown to be involved in the decolorization and degradation process. Loofa immobilized cells were also able to decolorize a mixture of reactive dyes in batch mode (in terms of ADMI value) with significant reduction in TOC and COD. Loofa immobilized cells were also used for continuous decolorization of individual and mixture of reactive dyes in a fixed bed bioreactor.  相似文献   

20.
Jia C  Kang R  Zhang Y  Zhang Y  Cong W 《Biodegradation》2007,18(5):551-557
Degradation and decolorization of monosodium glutamate wastewater (MSGW) with Coriolus versicolor were firstly carried out. The effects of various operation parameters namely wastewater concentrations, pH, culture time and incidence of sterilization on maximum percentage of degradation and decolorization of wastewater were investigated. Studies of mycelium and enzyme for C. versicolor degradation and decolorization were estimated in this study. Ten percentage of wastewater concentration and pH = 5.0 were found to be the most suitable ones among the other experiments. The highest degradation and decolorization efficiency of wastewater was obtained at the fifth day of cultivation, which was displayed with more than 70% chemical oxygen demand removal, 83% total sugar removal and 55% color removal, respectively. Sterile operation had no remarkable effect on the degradation and decolorization efficiency for C. versicolor. Mycelium and the extra cellular fungal enzyme were both necessary for the degradation and decolorization of MSGW. C. versicolor possesses great potential and economic advantages in MSGW treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号