首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacterioplankton biomass and dark fixation of inorganic carbon were measured in the highly humic (water colour up to 550 mg Pt l?1) and acidic lake, Mekkojärvi. Strong thermal and chemical stratification developed in the water column early in spring and led rapidly to anoxia in the hypolimnion, which extended to less than 1.0 m from the surface. In the epilimnion only small bacteria were abundant. In the anoxic zone both the abundance and the mean size of bacteria were considerably higher than in the epilimnion. These differences are thought to be the result of different grazing pressure from zooplankton in the two zones. In late summer a high concentration of bacteriochlorophyll d in the upper hypolimnion indicated a high density of photosynthetic bacteria. Bacterial biomass was similar to that of phytoplankton in the epilimnion, but 23 times higher in the whole water column. In August, dark fixation of inorganic radiocarbon in the anaerobic zone was 51% of the total 14C-incorporation and the contribution of light fixation was only 5.4%. In the polyhumic Mekkojarvi, bacterioplankton was evidently a potentially significant carbon source for higher trophic levels, but bacterioplankton production could not be supported by phytoplankton alone. Allochthonous inputs of dissolved organic matter probably support most of the bacterial production.  相似文献   

3.
The vertical distributions of bacteria and algae in a steeply stratified, highly humic lake were studied during three 24 h periods in summer. The highest bacterial and algal densities and biomasses were recorded in the anoxic hypolimnion. The bacterial biomass in the hypolimnion was composed mainly of photosynthetic green sulphur bacteria (Chlorobium) which occurred at very low light intensity (< 1.5 μmol m−2 s−1). The numbers and biomasses of bacteria, both in the epilimnion and hypolimnion, were mostly higher at night than during the day, indicating possible asynchrony between the production and loss of bacteria. Because of vertical migration, the diurnal vertical distribution of algae was more variable than that of bacteria. Particularly in July and August, when cryptomonads were abundant, the biomass of algae was much higher in the epilimnion during the day than at night. The flagellated chlorophytes, Chlamydomonas spp. and Scourfieldia cordiformis, stayed mainly in the upper hypolimnion close to the oxic-anoxic boundary zone where only a small proportion of Daphnia longispina was continuously present. Unpalatable Mallomonas chrysophytes with silicified plates and bristles, and small, presumably heterotrophic, flagellates stayed in the oxic epilimnion together with a dense (up to 300 ind l−1) population of D. longispina. The results indicated that, besides the physical and chemical properties of the water column, grazing pressure by Daphnia longispina strongly affected the vertical distribution of microorganisms in this polyhumic lake.  相似文献   

4.
Past occurrence and quantities of Anabaena cyanobacteria in Lake Pyhäjärvi, SW Finland, were investigated using sediment and phytoplankton records. A short sediment core covering the past 20 years was examined for Anabaena resting spores (akinetes) in order to assess the utility of akinetes as a paleolimnological proxy. Sedimentary akinetes confirmed the past existence of Anabaena in water, but did not show a direct correlation with the amount of Anabaena spp. in water samples. The amount of planktonic Anabaena spp. correlated with total phosphorus and nitrogen concentrations in Lake Pyhäjärvi, but the number of akinetes was considered to have a relationship with low nutrient concentrations and dominant bloom-forming cyanobacteria. Akinetes are probably suitable for low-resolution and long time scale paleolimnological investigations, where they provide information of past cyanobacteria that cannot be directly attained otherwise.  相似文献   

5.
The availability and importance of food sources for growth of Daphnia longispina L. from a highly coloured fishless lake with anoxic hypolimnion were assessed by combining in situ and laboratory experiments. In in situ experiments populations were enclosed in tubes with natural temperature stratification and with or without anoxic hypolimnion. In the laboratory experiments the importance of food source (littoral zone vs pelagic epilimnion) was assessed by enclosing moss thalli and a natural zooplankton population in a large-scale flow-through system supplying food for experimental Daphnia. Growth of juveniles of Daphnia in epilimnetic water was determined in batch culture experiments and the importance of increasing concentrations of bacteria and algae for their growth and development was investigated with a small-scale flow-through system. Access to the anoxic hypolimnion enhanced the growth of Daphnia by 23–24%. Growth rates in the tubes with anoxic hypolimnion were 0.36 and 0.16 d–1 in July and August respectively. In tubes without anoxia the corresponding values were 0.29 and 0.13. In batch-cultures the highest growth rate determined was 0.16 and the overall rates were lower than in in situ experiments. In batch culture Daphnia was able to grow in darkness for 10 days with a rate of 0.16. In the large-scale flow-through system Daphnia population fed with littoral water reproduced well despite the low concentration of algae and increased its number by a factor of c. 32 in 10 days. However, the animals were small and net production of Daphnia population thus lower under the littoral influence than in the control treatment. Population could survive and grew slowly on pelagial water processed by a natural zooplankton community and with very little algae left. It is thus possible that bacteria serve as a life-support system enabling the population survival over periods of algal shortage. Small-scale flow-through experiments revealed that Daphnia longispina is able to mature and reproduce on a bacterial diet if the food concentration is high enough and Daphnia on bacterial food could achieve growth rates similar to those on an algal diet. The threshold food level for Daphnia longispina was estimated to be c. 18.5 g C 1–1. Detrital material is of limited value in nutrition of Daphnia even in a lake where more than 75% of carbon is bound in particulate detritus.  相似文献   

6.
Ejsmont-Karabin  J.  Gulati  R. D.  Rooth  J. 《Hydrobiologia》1989,(1):29-34
Visual observations and experiments on food preference of Euchlanis dilatata lucksiana show that this euchlanid can feed on blue-green algae not consumed by the most planktonic animals. Nevertheless, even in lakes with blooms of blue-green algae, E. d. lucksiana occur infrequently and generally in low numbers. The paper is an attempt to explore into the causes for the rare occurrence of Euchlanis in the pelagial. A comparison of threshold food concentrations calculated from N and P excretion rates (Gulati et al., this volume) with the concentrations of seston in the Lake Loosdrecht shows that the latter were several times higher during study period in 1984. This implies that the food requirements of Euchlanis were always satisfied in this lake. The time needed for the consumption of the total food fraction in a liter of lake water by a concentration of 50 Euchlanis l–1 was also calculated. This time varied from 70 to 200 days, so a Euchlanis population even at its maximum density will not cause major changes in blue-green algae biomass by grazing. Thus, food limitation cannot be viewed as a factor controlling the Euchlanis densities in Loosdrecht Lakes. There is some evidence that Euchlanis is heavily predated in Loosdrecht Lakes, losses in its biomass accounting for 126% of the production. Adaptation of this species to the littoral zone, as expressed by the deposition of eggs on plants, can also limit the occurrence of the lucksiana form to water bodies with blooms of blue-green algae.  相似文献   

7.
The biological oxygen demand (BOD) of filtered water from Lake Wingra, Wisconsin is significantly higher in the littoral zone than in the pelagial zone. Laboratory experiments indicate that BOD is not influenced by water temperature at the time of sampling or by enrichment with nitrate or ammonia. Rather, enrichment with macrophyte leachate sharply increases BOD, and enrichment with phosphate produces a small but significant increase in BOD. We conclude that high BOD in littoral waters of the lake is an indication of production of labile organic matter in the water by dense beds of the macrophyte Myriophyllum spicatum.  相似文献   

8.
SUMMARY. The plankton community within an Equisetum fluviatile stand in oligotrophic Lake Pääjärvi had distinct diurnal fluctuations in the total cell volume and species composition of algae and in the abundance of microcrustaceans ( Bosmina coregoni ). Diurnal fluctuations in pH, oxygen saturation and temperature of the water were also recorded. Within the littoral region, daytime pH values > 9 were recorded, whereas in the pelagial region of the lake, values remained near pH 7. Diatoms and green algae dominated the littoral phytoplankton especially in the innermost parts of the macrophyte stand, with cryptophytes (dominant in the pelagial area) occurring only in small numbers. At the outer parts of the macrophyte stand, water movements between the pelagial and littoral areas might rapidly increase the contribution of cryptophytes in the phytoplankton. The fall in algal cell volume during the night may have resulted from settling out of cells in the absence of wind-induced water movements, perhaps together with increased grazing pressure from dense swarms of Bosmina (up to 3000 individuals per litre) which appeared during the night.  相似文献   

9.
Laboratory microcosms were used to compare the effects of the littoral ostracod Cypridopsis vidua and the planktonic cladoceran Daphnia magna on community structure and metabolism. Filter-feeding by cladocerans, both in the presence and absence of ostracods, greatly reduced the abundance of planktonic algae when D. magna reached peak density around day 50; rotifers and euglenids were then limited to flocculent matter on the container bottom. Both net production and community respiration rates decreased as community composition changed. Microcosms containing ostracods as the only microcrustacean showed little reduction in total algal numbers but the otherwise dominant alga, Scenedesmus spp., was replaced by Ankistrodesmus spp. when peak ostracod density was reached around day 100. Rotifers were completely eliminated but euglenids were able to coexist with ostracods. Ostracods impacted community metabolism less than cladocerans, but depressed respiration slightly more than net production.  相似文献   

10.
Bacterioplankton from 10 oligotrophic lakes, representing a gradient from clearwater to polyhumic, were grown in dilution cultures of sterile filtered lake water. The bacterial biomass achieved in the stationary phase of the dilution cultures was positively correlated with the amount of both humic matter and dissolved organic carbon (DOC) in the lakes. About the same fraction of the total DOC pool was consumed in the dilution cultures of all lakes (average 9.5%, coefficient of variation (CV) 24%), with approximately the same growth efficiency (average 26%, CV 28%). Thus, humic lakes could support a higher bacterial biomass than clearwater lakes due to their larger DOC pools. The relevance of the results to planktonic food webs of humic and clearwater lakes is discussed.  相似文献   

11.
Previous studies have suggested that the roach Rutilus rutilus (L.) stock of Lake Vesijärvi is one of the main factors delaying the recovery of the lake after sewage diversion. This study is concerned with the documentation of the diet of roach in the lake. In total, 531 roach were examined. Both in the pelagial and in the littoral the roach had mixed diets in May and in September—October. The importance of zooplankton decreased and the importance of benthos and plants increased with increasing size of roach. In July, in the pelagic zone all sizes of roach fed exclusively on zooplankton (Bosmina spp.), while in the littoral zooplankton had the highest volume proportions only in the smallest (<130 mm) roach. The frequent use of plant food and slow growth rate of large roach indicate a low availability of animal prey. As the fish densities decrease due to the mass removal taking place in the lake, the percentage of plant food in the diets of roach will probably decrease and the growth of roach will increase. Additionally, the tendency of the roach to migrate into the pelagic zone in early summer may be reduced, which would decrease their predation on the zooplankton.  相似文献   

12.
Horppila  Jukka  Kairesalo  Timo 《Hydrobiologia》1992,(1):323-331
Lake Vesijärvi, southern Finland, suffered sewere eutrophication by sewage effluent from the city of Lahti during the 1960's and the early 1970's. The municipal sewage loading was diverted from the lake in 1976 and the lake started to recover. However, in the 1980's blue-green algal blooms increased again and the recovery of the lake faded. Enclosure experiments demonstrated that high roach (Rutilus rutilus) biomass is one of the key factors in the fading recovery of the lake. In this study, the influence of roach and another cyprinid fish species (bleak, Alburnus alburnus) to planktonic algal productivity and biomass in Lake Vesijärvi was examined. Enclosure experiments in the field showed the impacts of planktivorous bleak on water quality; in an enclosure with a density of 1 fish m–2 average daily algal production (1370 mg C m–2) and chlorophyll-a concentration (50–90 µg 1–1) were more than twice that in an enclosure without fish. Laboratory experiments showed that the availability of planktonic food affects the foraging behaviour of roach and consequently the internal nutrient loading from the sediment into the water. Roach caused the highest phosphorus loading and turbidity when there was no zooplanktonic food available in the water. The possible interactions between planktivorous and omnivorous fish species are discussed.  相似文献   

13.
This report presents studies on temporal variations of phytoplanktonand bacterioplankton production and the kinetics of bacterialenzyme activity (aminopeptidase, ß-glucosidase andlipase) in the littoral and pelagial sampling sites of a highlyeutrophic lake. Bacterial and algal production correlated wellin pelagic water, but in the littoral there was no significantcorrelation between these processes. The highest activity ofbacterial enzymes occurred during phytoplankton blooms (exceptß-glucosidase). The rates of enzymatic decompositionof organic matter in the littoral and pelagial sampling siteswere similar. Turnover time of enzymatic hydrolysis of the studiedbiopolymers in lake water was the shortest for proteins andlipids during phytoplankton blooms in both sampling sites. Themost dynamic changes in turnover time displayed were for thehydrolysis of polysaccharides by ß-glucosidase inthe littoral samples. The significance of organic matter forbacterial production and enzyme activity, and the role of enzymesin bacterial processing of biopolymers in a lake ecosystem arediscussed  相似文献   

14.
A large-scale biomanipulation trial was carried out on Lake Vesijärvi in Finland during 1989–1993. Following the mass removal of coarse fish the biomass of cyanobacteria collapsed from 1.4 g/m?3 to below 0.4 g/m?3, while total phosphorus concentration declined from 45 μ g/L to 30 μ g/L. No relevant changes in zooplankton communities were observed. The results suggest that the success of food web manipulation as a tool for lake restoration is not necessarily dependent on the grazing rate of zooplankton. The effects of reduced fish-mediated internal loading and recycling of nutrients are in many cases stronger than those of reduced planktivory. Alternative stable states of water quality may also exist in lakes not covered by macrophytes, owing to the changes in the behavior of fish stocks. Year-to-year variation in the littoral zone may cause large oscillations in lake ecosystems—for example, through the recruitment of fish. In addition, the nutrients translocated by fish from the littoral zone may affect the nutrient dynamics of the pelagial plankton community. In terms of phytoplankton species composition and the ratio of phosphorus to chlorophyll a, the water quality in Lake Vesijärvi has improved in a stepwise fashion within the last 10 years. This is probably due to the fact that the five-year mass removal of fish in Enonselkä fulfilled the requirement of sustained management of fish stocks in order to maintain nonequilibrial conditions between alternate stable states. The prediction of the water quality development is obscured, however, by spatial and temporal within-lake variation, which sets high requirements for sampling programs.  相似文献   

15.
Population densities, migrations and food composition of Echinogammarus veneris in Lake Kinneret were studied during march–September 1976. Migrations are affected by changes of water level and littoral currents. Peridinium was abundant in the gut content during its blooming period in the lake while cladocerans, benthic copepods, rotifers and other algae were abundantly found in other months. Metabolic parameters that were calculated for the gammarid population indicated that its contribution to the carbon-flow system in Lake Kinneret is negligible in comparison with nematodes, molluscans or planktonic copepods and cladocerans.  相似文献   

16.
Submerged macrophytes may play an important role as a refuge for zooplankton against predators. However, a recent study suggests that their importance depends on the trophic state of the lake. We studied the impact of fish and macrophytes on the horizontal distribution of pelagic cladocerans in 56 oligotrophic arctic Greenland lakes. In north-east and western Greenland, zooplankton was sampled in the near-shore (littoral) and central (pelagial) part of all lakes and fish were sampled with multiple mesh-sized gill nets. Macrophytes were visually estimated in the littoral. In north-east Greenland, 5 taxa of cladocerans were found, while 14 taxa were recorded in western Greenland. Daphnia pulex occurred only in fishless lakes in both northeast and western Greenland and avoided the near-shore areas in the shallow and deep lakes. Bosmina spp. and Holopedium gibberum were evenly distributed between the littoral and the pelagial in the deep and shallow fishless lakes. However, their near-shore density was lowest in the presence of fish. Macrophyte-related and benthic cladocerans concentrated either in the littoral or were evenly distributed between the littoral and the pelagial, irrespective of depth and fish presence or absence. Macrophytes had no impact on the horizontal distribution of pelagic cladocerans. Thus, it is concluded that horizontal heterogeneity of Bosmina spp. and Holopedium gibberum might be affected by the presence of fish.  相似文献   

17.
Stores and flows of carbon, phosphorus and nitrogen in a littoral Equisetum stand were studied in 1978–1980 in the oligotrophic, mesohumic lake Pääjärvi, southern Finland. The major carbon and nutrient stores were sediment and Equisetum. The seasonal cycle of the macrophyte vegetation had a profound influence on the whole littoral ecosystem. In spring, when only dead remains of Equisetum were present above ground, there were few differences in nutrient, chlorophyll a and zooplankton concentrations between the littoral and the open lake; phytoplankton and epiphytes were the major producers.In early June, when new shoots of Equisetum reached the water surface, water exchange between the littoral and the open lake started to diminish, and the characteristic features of a closed macrophyte zone gradually developed: by August the P, Chl a and zooplankton concentrations in the littoral were 5–10 times those in the open lake. From late June until autumn Equisetum was overwhelmingly dominant both in biomass and in production.The measured total primary production and respiration values indicated a high rate of internal cycling of carbon and nutrients. The daily P requirements of plant growth exceeded the total P stored in the water by a factor of 2–4, and also exceeded the release of nutrients in excretion. High N:P ratios in the water (total 10–64, inorganic 18–171) suggested that P was probably always the limiting nutrient.The P content of the annual production of Equisetum in Pääjärvi was 2.3% of the mean annual P load, and 5.3% of the mean total P storage in the water volume of the lake.  相似文献   

18.
The Early and Middle Flandrian geological development and paleolimnology of Lake Spitaalijärvi was studied using pollen, diatom and cladoceran analysis and 14C dating. Spitaalijärvi was isolated from the Ancylus Lake about 9000 B.P., at which time birch and pine and plants typical of open habitat communities grew on the solitary island. The rational limits for Alnus and Picea were ca. 8300 B.P. and 3700 B.P., respectively. During the first few hundred years after isolation Spitaalijärvi was probably fairly eutrophic, with a low water level. Water level began to rise before the Alnus rise (A°) and the lake became oligotrophic. After another transgression, which started before the Picea rise (P°), Tabellaria binalis and Semiorbis hemicyclus appear in the diatom stratigraphy indicating ultra-oligotrophic conditions. The main reason for the ultra-oligotrophy of Lake Spitaalijärvi is the character of the parent material in the catchment, consisting of glacial and littoral deposits derived from the local quartz sandstone of highly siliceous nature.  相似文献   

19.
SUMMARY. 1. Grazing on algae and bacteria by the planktonic cladoceran, Daphnia longispina , was studied in a small polyhumic lake with low phytoplankton primary production in southern Finland.
2. D. longispina filtered algae at average rates of 0.09-0.82 ml ind−1 h−1. The filtering rates on bacteria were 26-92% of those on algae in parallel experiments.
3. From June to August algae, including mixotrophic and heterotrophic forms, comprised 56-93% of the food ingested by D. longispina. In mid-September and early October, when the Daphnia population was declining and the algal biomass was low, bacteria comprised 73% and 55% respectively of the food of Daphnia.
4. For D. longispina , an energy pathway via bacteria and bactivorous flagellates is probably a more important link to allochthonous organic matter than direct utilization of epilimnetic bacteria.  相似文献   

20.
Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 × 107 cells ml?1. About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Planctomycetes. The population sizes of the Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of the Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of the Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号