首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This paper reports the results obtained in a study of the aerobic stabilization of sludge in a laboratory-scale reactor. A variety of parameters were measured including: physicochemical (pH, dissolved oxygen, temperature, volatile and total solids, chemical oxygen demand and hydrogen sulfide production); microbiological (fecal coliforms, Escherichia coli, viable biomass, and the relationship between active and total cells); and measurements of enzymatic activity (oxygen uptake rate, dehydrogenase activity and esterase activity).From the results, it may be concluded that the traditional physicochemical and microbiological parameters present a series of problems, which detract from their usefulness. The enzymatic parameters, dehydrogenase activity (primary metabolism) and esterase activity (secondary metabolism) are better able to characterise the process; and the quotient between these two variables may be used to estimate the degree of endogenesis and, consequently, the degree of stability of the aerobic sludge digestion. In addition, these techniques are swift and simple to employ.  相似文献   

2.
The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant.  相似文献   

3.
Proteolysis is one of the main enzymatic reactions involved in waste activated sludge (WAS) digestion. In this study, proteases excreted from Bacillus stearothermophilus (ATCC 31197) were classified, and an enhancement of protease activity was achieved using economical chemical additives for WAS digestion. Proteases excreted from B. stearothermophilus were classified into two families: serine and metallo-proteases. Various metal ions were investigated as additives which could potentially enhance protease activity. It was observed that Ca2+ and Fe2+ could markedly activate these enzymes. These results were applied to thermophilic aerobic digestion (TAD) of industrial WAS using B. stearothermophilus. The addition of these divalent ions enhanced the degradation performance of the TAD process in terms of reducing the total suspended solids (TSSs), the dissolved organic carbon (DOC) content, and the intracellular and extracellular protein concentrations. The best result, with respect to protein reduction in a digestion experiment, was obtained by the addition of 2 mM Ca2+. Therefore, a proposed TAD process activated by calcium addition can be successfully used for industrial and municipal WAS digestion to the upgrading of TAD process performance.  相似文献   

4.
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.  相似文献   

5.
Sequential anaerobic-aerobic digestion was applied to waste activated sludge (WAS) of a full scale wastewater treatment plant. The study was performed with the objective of testing the sequential digestion process on WAS, which is characterized by worse digestibility in comparison with the mixed sludge. Process performance was evaluated in terms of biogas production, volatile solids (VS) and COD reduction, and patterns of biopolymers (proteins and polysaccharides) in the subsequent digestion stages. VS removal efficiency of 40%, in the anaerobic phase, and an additional removal of 26%, in the aerobic one, were observed. For total COD removal efficiencies of 35% and 25% for anaerobic and aerobic stage respectively, were obtained. Kinetics of VS degradation process was analyzed by assuming a first order equation with respect to VS concentration. Evaluated kinetic parameters were 0.44 ± 0.20 d(-1) and 0.25 ± 0.15 d(-1) for the anaerobic stage and aerobic stage, respectively. With regard to biopolymers, in the anaerobic phase the content of proteins and polysaccharides increased to 50% and 69%, respectively, whereas in the subsequent aerobic phase, a decrease of 71% for proteins and 67% for polysaccharides was observed. The average specific biogas production 0.74 m(3)/(kg VS destroyed), was in the range of values reported in the specialized literature for conventional anaerobic mesophilic WAS digestion.  相似文献   

6.
Li X  Ju LK 《Biotechnology progress》1999,15(6):1125-1132
An online fluorometer designed for following intracellular NAD(P)H was used to monitor aerobic sludge digestion experiments. The fluorescence showed an initial rise to a high plateau, a sharp decline after staying at the plateau for 20-60 h, and a trailing very slow decrease. The characteristic fluorescence profile was shown to result mainly from the solids-associated fluorescence, after ruling out other factors such as pH, temperature, and supernatant fluorescence. The fluorescence profile was, however, not a mere result of the decreasing solids concentration. The varying sludge viability and population composition (e.g., the decay of heterotrophs and the increasing fraction of nitrifiers) played important roles. The fluorescence profile correlated well with the profile of the viable heterotrophic cell number concentration evaluated with TSB-agar plates. The initial increase of the number concentration was attributed to the growth of multiple small bacteria from the lysate of each large microorganism, which was demonstrated in the experiments with baker's yeast as the starting culture for digestion. The fluorescence profiles observed in the yeast experiments were similar to those in the sludge experiments. Responding to glucose additions and the switch from aerobic to anaerobic conditions, the yeast systems showed typical step increases of fluorescence as expected from the change of NAD(P)H level associated with heterotrophic metabolism. However, no such fluorescence responses were detectable in the sludge digestion systems. NAD(P)H were thus uncertain to be responsible for the online fluorescence observed. Nonetheless, the initial fluorescence plateau corresponded to the period of rapid digestion and, for the plant studied, the EPA regulation criteria of VSS reduction >38% and/or SOUR <1.5 mg of O(2) (g of TS)(-)(1) h(-)(1) were satisfied at the end of the plateau. The online fluorescence provides an effective means of monitoring the aerobic sludge digestion process.  相似文献   

7.
Nam H  Ryu T  Lee K  Kim S  Lee D 《BMB reports》2008,41(8):609-614
The concentrations and catalytic activities of enzymes control metabolic rates. Previous studies have focused on enzyme concentrations because there are no genome-wide techniques used for the measurement of enzyme activity. We propose a method for evaluating the significance of enzyme activity by integrating metabolic network topologies and genome-wide microarray gene expression profiles. We quantified the enzymatic activity of reactions and report the 388 significant reactions in five perturbation datasets. For the 388 enzymatic reactions, we identified 70 that were significantly regulated (P-value < 0.001). Thirty-one of these reactions were part of anaerobic metabolism, 23 were part of low-pH aerobic metabolism, 8 were part of high-pH anaerobic metabolism, 3 were part of low-pH aerobic reactions, and 5 were part of high-pH anaerobic metabolism.  相似文献   

8.
Nitrogen transformations during aerobic/anoxic sludge digestion   总被引:8,自引:0,他引:8  
Laboratory experiments were conducted to study and compare nitrogen transformations occurring under both aerobic digestion and aerobic/anoxic (A/A) digestion. The process performance was examined at different sludge residence times (SRTs), temperatures and anoxic cycles. Both modes of operation gave comparable solids reduction results. However, introduction of anoxic periods to aerobic sludge digestion appears to be a promising alternative to control pH during digestion through endogenous nitrate respiration (ENR). Operating an aerobic digester with an anoxic phase to achieve complete denitrification would also improve supernatant quality over that achieved solely by aerobic digestion. Alternating A/A operation can conserve most of the influent alkalinity and maintain near neutral pH condition over prolonged periods. The A/A digestion of mixed primary/waste-activated sludge achieved up to 43.7% reductions in volatile suspended solids, 33.7% removal of total nitrogen, and a specific ENR rate of 5.75 x 10(-2) mg NO3-N/mg VSSd. Optimum results were obtained at 10 d SRT, 30 degrees C temperature, and 50% anoxic cycle length.  相似文献   

9.
Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp.  相似文献   

10.
Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp.  相似文献   

11.
The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.  相似文献   

12.
13.
The rheological characterization of activated sludge originating from different aeration tanks and from a lab-scale plant was carried out using rotation tests. Two rheological parameters were used: limit viscosity (mu(infinity)) and reduced hysteresis area (rHa). Mu(infinity) was strongly influenced by the total suspended solids (TSS) content of sludge and an exponential relation was found between TSS and the rheological parameter mu(infinity). Significant differences in sludge viscosity were found for sludge of different origins, but all of 10 g/l TSS content, indicating ability of viscosity to show different sludge qualities. Marked changes in activated sludge microorganisms communities were shown to have an influence on rheological parameters. During aerobic digestion of sludge, variations in mu(infinity) were noticed, indicating change of sludge quality. An over-growth of filamentous bacteria species was shown to induce a particular rheological behavior which could be characterized by rHa. This parameter was proposed as an index of filamentous bacteria proliferation in activated sludge aeration tanks.  相似文献   

14.
Anaerobic Granular Sludge Bioreactor Technology   总被引:1,自引:0,他引:1  
Anaerobic digestion is a mature wastewater treatment technology, with worldwide application. The predominantly applied bioreactor designs, such as the upflow anaerobic sludge blanket and expanded granular sludge bed, are based on the spontaneous formation of granular sludge. Despite the exploitation of granular reactors at full-scale for more than two decades, the mechanisms of granulation are not completely understood and numerous theories have been put forward to describe the process from a biological, ecological and engineering point of view. New technological opportunities are emerging for anaerobic digestion, aided by an improved understanding of microbiological and environmental factors affecting the formation and activity of anaerobic granular sludge.  相似文献   

15.
The removal of excess activated sludge from biological purification plant treating crude oil refining wastewaters by the method of aerobic digestion was studied. In stationary system 58% of excess sludge was removed within 32 days. In semicontinvous system (with daily addition of sludge) 85--64% of the sludge was removed, depending on amount of excess activated sludge added. Enrichment of the aerating air in oxygen (10% v/v) increased the efficiency of sludge digestion by about 10%.  相似文献   

16.
The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.  相似文献   

17.
Understanding the properties of aerobic sludge granules as hydrogels   总被引:2,自引:0,他引:2  
Aerobic sludge granules are larger, denser microbial aggregates than activated sludge flocs with a smoother and more regular surface, which facilitates greater wastewater treatment intensity. Factors important in their growth are still poorly understood, which is an impediment to the construction and operation of full-scale aerobic sludge granule processes. Data in this article obtained with granules treating an abattoir wastewater provide evidence that aerobic sludge granules are hydrogels. The results also demonstrate a method for characterizing macromolecular associations. The rheological profile of these granules was found to be analogous with that of typical polymer gels. Water uptake or swelling reflects an equilibrium between granule elastic modulus and osmotic pressure, whereby uptake is increased by reducing solute concentration or the elastic modulus. A weakening of the extracellular polymeric substance (EPS) matrix as demonstrated with mechanical spectroscopy was induced by several environmental factors including temperature, pH and ionic strength. Uniform and elastic deformation was observed at low strain. Enzymatic degradation studies indicate that proteins and alpha-polysaccharides were the major granule structural materials. The aerobic sludge granules in the current study were therefore protein-polysaccharide composite physical hydrogels. While aerobic sludge granules treating an abattoir wastewater are used as a case study, many of the fundamental principles detailed here are relevant to other granulation processes. The paradigm established in this study can potentially be applied to better understand the formation of aerobic sludge granules and thus overcome a hurdle in the acceptance of aerobic sludge granulation as an alternative to more traditional wastewater treatment processes.  相似文献   

18.
This study attempted to address a fundamental question of whether metabolic behaviors of aerobic granules are different from their counterparts, such as activated sludge and biofilms. A series of respirometric experiments were carried out using mature aerobic granules with mean sizes of 0.75–3.4 mm. Results suggested that metabolism of aerobic granules comprised three consecutive phases: (i) conversion of external dissolved organic carbon to a poly-β-hydroxybutyrate-like substance; (ii) growth of aerobic granules on the stored poly-β-hydroxybutyrate-like substance derived from phase I, and (iii) subsequent endogenous metabolism of aerobic granules. The stoichiometric analysis revealed that the conversion yields of external dissolved organic carbon to the poly-β-hydroxybutyrate-like substance, the growth yields of biomass on storage, and the overall growth yields of biomass on external dissolved organic carbon were not significantly correlated to the sizes of aerobic granules, i.e., the metabolism of aerobic granules would be size independent. The conversion coefficients and growth rates of aerobic granules were found to be comparable with those reported in the activated sludge and biofilms cultures, indicating that there would not be significant difference in the metabolisms of aerobic granules over activated sludge and biofilms. This information will be useful for modeling and designing aerobic granular sludge processes.  相似文献   

19.
Summary Enzymatic activities of aerobic thermophilic microorganisms are described and investigated for the development and control of sewage sludge treatment processes in batch and fed-batch cultures. Proteolytic activity is the main enzymatic activity in an aerobic thermophilic sewage sludge treatment process. It has an optimum at 80°C and can be found also during growth on synthetic media. The activity is correlated with the increase in ammonium in the particle-free fraction and the values of the respiratory quotients during cultivation either in sewage sludge or in a syntheticc medium. No other extracellular activities (lipase, amylase, pectinase and cellulase) were detected in the investigated sludge samples. Carbohydrates, lipids and other polymers were either not present in significant amounts or passed with only minor modifications through the treatment. Cultivations in sewage sludge were either oxygen or carbon limited. One strain able to excrete lysozyme was isolated. It might have a synergistic effect on the heat inactivation of pathogenic microorganisms (cryptic growth) although lytic activity remained very low. Two-thirds of the entire metabolic activity is due to degradation of insoluble matter. The utilization of particulate matter also has a positive influence on the efficiency of the process by reduction in dry matter and increase in water-removal properties. Even at extremely low aeration rates, the acidification effect was small. Only small amounts of isobutyrate, isovaleriate and 2-methylbutyrate were formed at extremely low aeration rates and caused an increase in the total volatile fatty acid content after 12 and 36 h cultivation time.  相似文献   

20.
Experiences with the dual digestion of municipal sewage sludge   总被引:2,自引:0,他引:2  
The dual digestion process was investigated using sludge samples collected at the WWTP of Tomaszow Mazowiecki (Poland). Mixed sludge was treated in a laboratory setup under batch and semi-continuous conditions. Dual digestion with a 1d SRT aerobic thermophilic pretreatment followed by an anaerobic step with 20 d of SRT turned out to be optimal, since a 44-46% VS reduction and a biogas yield of 480 dm(3)/kg VS fed were achieved. In the course of the process, the concentration of nitrogen in supernatant increased over 5 times and its major portion was converted into ammonia. Phosphorus also entered the supernatant, reaching over 200 g/m(3). The dual digestion noticeably deteriorated the sludge dewaterability. Following completion of the process, capillary suction time measurements averaged 64 s for the raw sludge, 400 s for aerobically pretreated sludge and 310-360 for the anaerobically digested sludge. Aerobic pretreatment consistently reduced Enterobacteriaceae content to below detectable limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号