首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the importance of endothelium-derived hyperpolarizing factor (EDHF) vs. nitric oxide (NO) and prostacyclin (PGI(2)) in bradykinin (BK)-induced relaxation in isolated small subcutaneous arteries from normal pregnant women. We also explored the contribution of cytochrome P-450 (CYP450) product of arachidonic acid (AA) metabolism, hydrogen peroxide (H(2)O(2)), and gap junctions that have been suggested to be involved in EDHF-mediated responses. Isolated arteries obtained from subcutaneous fat biopsies of normal pregnant women (n = 30) undergoing planned cesarean section were mounted in a wire-myography system. In norepinephrine-constricted vessels, incubation with N(G)-nitro-L-arginine methyl ester (L-NAME) resulted in a significant reduction in relaxation to BK. Simultaneous incubation with L-NAME and indomethacin failed to modify this response further. BK-mediated dilatation in the presence of K(+)-modified solution was decreased to similar level as obtained after incubation with L-NAME. Incubation with L-NAME abolished BK-induced responses in K(+)-modified solution. Sulfaphenazole, a specific inhibitor of CYP450 epoxygenase, and catalase (an enzyme that decomposes H(2)O(2)) did not affect the EDHF-mediated relaxation because concentration-response curves to BK were similar in arteries after incubation with L-NAME vs. L-NAME + sulfaphenazole and L-NAME + catalase. The inhibitor of gap junctions, 18 alpha-glycyrrhetinic acid, significantly reduced BK-mediated relaxation both without and with incubation with L-NAME. We found that both NO and EDHF, but not PGI(2), are involved in the endothelium-dependent dilatation to BK. BK-induced relaxation is almost equally mediated by NO and EDHF. CYP450 epoxygenase metabolites of AA or H(2)O(2) do not account for EDHF-mediated response; however, gap junctions are involved in the EDHF-mediated responses to BK in subcutaneous small arteries in normal pregnancy.  相似文献   

2.
The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating factors, including prostacyclin, nitric oxide, and endothelium-derived hyperpolarizing factor (EDHF). We have recently identified that endothelium-derived hydrogen peroxide (H(2)O(2)) is an EDHF in mice. The present study was designed to examine whether this is also the case in humans. Bradykinin elicited endothelium-dependent relaxations and hyperpolarizations in the presence of indomethacin and N(omega)-nitro-l-arginine, which thus were attributed to EDHF, in human mesenteric arteries. The EDHF-mediated relaxations were significantly inhibited by catalase, an enzyme that specifically decomposes H(2)O(2), whereas catalase did not affect endothelium-independent hyperpolarizations to levcromakalim. Exogenous H(2)O(2) elicited relaxations and hyperpolarizations in endothelium-stripped arteries. Gap junction inhibitor 18alpha-glycyrrhetinic acid partially inhibited, whereas inhibitors of cytochrome P450 did not affect the EDHF-mediated relaxations. These results indicate that H(2)O(2) is also a primary EDHF in human mesenteric arteries with some contribution of gap junctions.  相似文献   

3.
Using a novel vessel culture technique in combination with antisense oligonucleotide transfection, we tested whether the endothelium-derived hyperpolarizing factor (EDHF) is a cytochrome P450 (CYP)-related compound. Isolated resistance arteries from hamster gracilis muscle (n=19) were perfused and exposed to antisense (As), sense (S), or scrambled (Scr) oligonucleotides against the coding region of CYP2C8/9, an isoform expressed in endothelial cells. Thereafter, NO- and prostaglandin-independent, EDHF-mediated vascular responses associated with hyperpolarization [i.e., decrease in smooth muscle calcium (Fura 2) and vasodilation] were studied after the application of acetylcholine (ACh). These EDHF-mediated responses were markedly attenuated (by 70%) by As- but not by S- or Scr-oligonucleotide treatment. However, the responses to norepinephrine (0.3 micromol/l), the NO donor sodium nitroprusside (1 micromol/l), and the K(Ca) channel activator NS1619 (100 micromol/l) were unaltered. As treatment, which specifically targeted the endothelial layer (as assessed by confocal microscopy), had no inhibitory effect on increases in endothelial calcium to ACh. It is concluded that a CYP2C8/9-related isoform functions as an EDHF synthase in hamster resistance arteries and that a product of this enzyme is an EDHF, or at least an integral part of the signaling cascade leading to EDHF-mediated responses.-Bolz, S.-S., Fisslthaler, B., Pieperhoff, S., de Wit, C., Fleming, I., Busse, R., Pohl, U. Antisense oligonucleotides against cytochrome P450 2C8 attenuate EDHF-mediated Ca(2+) changes and dilation in isolated resistance arteries.  相似文献   

4.
The endothelium-dependent hyperpolarization of cells has a crucial role in regulating vascular tone, especially in microvessels. Nitric oxide (NO) and prostacyclin (PGI2), in addition to endothelium-derived hyperpolarizing factor (EDHF), have been reported to hyperpolarize vascular smooth muscle in several organs. Studies have reported the hyperpolarizing effects of these factors are increased by a stretch in large coronary arteries. EDHF has not yet been identified and cytochrome P-450 metabolites and H2O2 are candidates for EDHF. With the use of the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylbarbituric acid)trimethione oxonol [DiBAC4(3)], we examined whether NO, PGI2, cytochrome P-450 metabolites, and H2O2 contribute to ACh-induced hyperpolarization in pressurized coronary microvessels. Canine coronary arterial microvessels (60-356 mum internal diameter) were cannulated and pressurized at 60 cmH2O in a vessel chamber perfused with physiological salt solution containing DiBAC4(3). Fluorescence intensity and diameter were measured on a computer. There was a linear correlation between changes in the fluorescence intensity and membrane potential. ACh significantly decreased the fluorescence intensity (hyperpolarization) of the microvessels without any inhibitors. Endothelial damage caused by air perfusion abolished the ACh-induced decrease in fluorescence intensity. The inhibitors of NO synthase and cyclooxygenase did not affect the ACh-induced decreases in the fluorescence intensity. The addition of 17-octadecynoic acid, a cytochrome P-450 monooxygenase inhibitor, to those inhibitors significantly attenuated the ACh-induced decreases in fluorescence intensity, whereas catalase, an enzyme that dismutates H2O2 to form water and oxygen, did not. Furthermore, catalase did not affect the vasodilation produced by ACh. These results indicate that NO and PGI2 do not contribute to the ACh-induced hyperpolarization and that the cytochrome P-450 metabolites but not H2O2 are involved in EDHF-mediated hyperpolarization in canine coronary arterial microvessels.  相似文献   

5.
The role of endothelium-derived hyperpolarizing factor (EDHF) in regulating the pulmonary circulation and the participation of cytochrome P-450 (CYP450) activity and gap junction intercellular communication in EDHF-mediated pulmonary vasodilation are unclear. We tested whether tonic EDHF activity regulated pulmonary vascular tone and examined the mechanism of EDHF-mediated pulmonary vasodilation induced by thapsigargin in salt solution-perfused normotensive and hypoxia-induced hypertensive rat lungs. After blockade of both cyclooxygenase and nitric oxide synthase, inhibition of EDHF with charybdotoxin plus apamin did not affect either normotensive or hypertensive vascular tone or acute hypoxic vasoconstriction but abolished thapsigargin vasodilation in both groups of lungs. The CYP450 inhibitors 7-ethoxyresorufin and sulfaphenazole and the gap junction inhibitor palmitoleic acid, but not 18alpha-glycyrrhetinic acid, inhibited thapsigargin vasodilation in normotensive lungs. None of these agents inhibited the vasodilation in hypertensive lungs. Thus tonic EDHF activity does not regulate either normotensive or hypertensive pulmonary vascular tone or acute hypoxic vasoconstriction. Whereas thapsigargin-induced EDHF-mediated vasodilation in normotensive rat lungs involves CYP450 activity and might act through gap junctions, the mechanism of vasodilation is apparently different in hypertensive lungs.  相似文献   

6.
Nitric oxide (NO) is an inhibitor of hemoproteins including cytochrome P-450 enzymes. This study tested the hypothesis that NO inhibits cytochrome P-450 epoxygenase-dependent vascular responses in kidneys. In rat renal pressurized microvessels, arachidonic acid (AA, 0.03-1 microM) or bradykinin (BK, 0.1-3 microM) elicited NO- and prostanoid-independent vasodilation. Miconazole (1.5 microM) or 6-(2-propargyloxyphenyl)hexanoic acid (30 microM), both of which are inhibitors of epoxygenase enzymes, or the fixing of epoxide levels with 11,12-epoxyeicosatrienoic acid (11,12-EET; 1 and 3 microM) inhibited these responses. Apamin (1 microM), which is a large-conductance Ca2+-activated K+ (BKCa) channel inhibitor, or 18alpha-glycyrrhetinic acid (30 microM), which is an inhibitor of myoendothelial gap junctional electromechanical coupling, also inhibited these responses. NO donors spermine NONOate (1 and 3 microM) or sodium nitroprusside (0.3 and 3 microM) but not 8-bromo-cGMP (100 microM), which is an analog of cGMP (the second messenger of NO), blunted the dilation produced by AA or BK in a reversible manner without affecting that produced by hydralazine. However, the non-NO donor hydralazine did not affect the dilatory effect of AA or BK. Spermine NONOate did not affect the dilation produced by 11,12-EET, NS-1619 (a BKCa channel opener), or cromakalim (an ATP-sensitive K+ channel opener). AA and BK stimulated EET production, whereas hydralazine had no effect. On the other hand, spermine NONOate (3 microM) attenuated basal (19 +/- 7%; P < 0.05) and AA stimulation (1 microM, 29 +/- 9%; P < 0.05) of renal preglomerular vascular production of all regioisomeric EETs: 5,6-; 8,9-; 11,12-; and 14,15-EET. These results suggest that NO directly and reversibly inhibits epoxygenase-dependent dilation of rat renal microvessels without affecting the actions of epoxides on K+ channels.  相似文献   

7.
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A (CYP4A) metabolite of arachidonic acid (AA) in human and rabbit lung microsomes and is a dilator of isolated human pulmonary arteries (PA). However, little is known regarding the contribution of P-450 metabolites to pulmonary vascular tone. We examined 1) the effect of two mechanistically distinct omega- and omega1-hydroxylase inhibitors on perfusion pressures in isolated rabbit lungs ventilated with normoxic or hypoxic gases, 2) changes in rabbit PA ring tone elicited by 20-HETE or omega- and omega1-hydroxylase inhibitors, and 3) expression of CYP4A protein in lung tissue. A modest increase in perfusion pressure (55 +/- 11% above normoxic conditions) was observed in isolated perfused lungs during ventilation with hypoxic gas (FI(O(2)) = 0.05). Inhibitors of 20-HETE synthesis, 17-oxydecanoic acid (17-ODYA) or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), increased baseline perfusion pressure above that of vehicle and amplified hypoxia-induced increases in perfusion pressures by 92 +/- 11% and 105 +/- 11% over baseline pressures, respectively. 20-HETE relaxed phenylephrine (PE)-constricted PA rings. Treatment with 17-ODYA enhanced PE-induced contraction of PA rings, consistent with inhibition of a product that promotes arterial relaxation, whereas 6-(20-propargyloxyphenyl)hexanoic acid (PPOH), an epoxygenase inhibitor, blunted contraction to PE. Conversion of AA into 20-HETE was blocked by 17-ODYA, DDMS, and hypoxia. CYP4A immunospecific protein confirms expression of CYP4A in male rabbit lung tissue. Our data suggest that endogenously produced 20-HETE could modify rabbit pulmonary vascular tone, particularly under hypoxic conditions.  相似文献   

8.
In coronary resistance vessels, endothelium-derived hyperpolarizing factor (EDHF) plays an important role in endothelium-dependent vasodilation. EDHF has been proposed to be formed through cytochrome P-450 monooxygenase metabolism of arachidonic acid (AA). Our hypothesis was that AA-induced coronary microvascular dilation is mediated in part through a cytochrome P-450 pathway. The canine coronary microcirculation was studied in vivo (beating heart preparation) and in vitro (isolated microvessels). Nitric oxide synthase (NOS) (N(omega)-nitro-L-arginine, 100 microM) and cyclooxygenase (indomethacin, 10 microM) or cytochrome P-450 (clotrimazole, 2 microM) inhibition did not alter AA-induced dilation. However, when a Ca(2+)-activated K(+) channel channel or cytochrome P-450 antagonist was used in combination with NOS and cyclooxygenase inhibitors, AA-induced dilation was attenuated. We also show a negative feedback by NO on NOS-cyclooxygenase-resistant AA-induced dilation. We conclude that AA-induced dilation is attenuated by cytochrome P-450 inhibitors, but only when combined with inhibitors of cyclooxygenase and NOS. Therefore, redundant pathways appear to mediate the AA response in the canine coronary microcirculation.  相似文献   

9.
Pulmonary arteries from the Madison (M) strain relax more in response to acetylcholine (ACh) than those from the Hilltop (H) strain of Sprague-Dawley rats. We hypothesized that differences in endothelial nitric oxide (NO) synthase (eNOS) expression and function, metabolism of ACh by cholinesterases, release of prostacyclin, or endothelium-derived hyperpolarizing factor(s) (EDHF) from the endothelium would explain the differences in the relaxation response to ACh in isolated pulmonary arteries. eNOS mRNA and protein levels as well as the NO-dependent relaxation responses to thapsigargin in phenylephrine (10(-6) M)-precontracted pulmonary arteries from the M and H strains were identical. The greater relaxation response to ACh in M compared with H rats was also observed with carbachol, a cholinesterase-resistant analog of ACh, a response that was not modified by pretreatment with meclofenamate (10(-5) M). N(omega)-nitro-L-arginine (10(-4) M) completely abolished carbachol-induced relaxation in H rat pulmonary arteries but not in M rat pulmonary arteries. Precontraction with KCl (20 mM) blunted the relaxation response to carbachol in M rat pulmonary arteries and eliminated differences between the M and H rat pulmonary arteries. NO-independent relaxation present in the M rat pulmonary arteries was significantly reduced by 17-octadecynoic acid (2 microM) and was completely abolished by charybdotoxin plus apamin (100 nM each). These findings suggest that EDHF, but not NO, contributes to the strain-related differences in pulmonary artery reactivity. Also, EDHF may be a metabolite of cytochrome P-450 that activates Ca(2+)-dependent K(+) channels.  相似文献   

10.
We tested the hypotheses that EDHF in rat middle cerebral arteries (MCAs) involves 1) metabolism of arachidonic acid through the epoxygenase pathway, 2) metabolism of arachidonic acid through the lipoxygenase pathway, or 3) reactive oxygen species. EDHF-mediated dilations were elicited in isolated and pressurized rat MCAs by activation of endothelial P2Y(2) receptors with either UTP or ATP. All studies were conducted after the inhibition of nitric oxide synthase and cyclooxygenase with N(omega)-nitro-l-arginine methyl ester (10 microM) and indomethacin (10 microM), respectively. The inhibition of epoxygenase with miconazole (30 microM) did not alter EDHF dilations to UTP, whereas the structurally different epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanoic acid (20 or 40 microM) only modestly inhibited EDHF at the highest concentration of UTP. An antagonist of epoxyeicosatrienoic acids, 14,15-epoxyeicosa-5(Z)-enoic acid, had no effect on EDHF dilations to UTP. Chronic inhibition of epoxygenase in the rat with 1-aminobenzotriazol (50 mg/kg twice daily for 5 days) did not alter EDHF dilations. The inhibition of the lipoxygenase pathway with either 10 microM baicalein or 10 microM nordihydroguaiaretic acid produced no major inhibitory effects on EDHF dilations. The combination of superoxide dismutase (200 U/ml) and catalase (140 U/ml) had no effect on EDHF dilations. Neither tiron (10 mM), a cell-permeable scavenger of reactive oxygen species, nor deferoxamine (1 or 10 mM), an iron chelator that blocks the formation of hydroxyl radicals, altered EDHF dilations in rat MCAs. We conclude that EDHF dilations in the rat MCA do not involve the epoxygenase pathway, lipoxygenase pathway, or reactive oxygen species including H(2)O(2).  相似文献   

11.
The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD) patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS), prerequisites for myoendothelial gap junctions (MEGJ), and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA) suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.  相似文献   

12.
The rat kidney microsomal epoxygenase catalyzed the asymmetric epoxidation of arachidonic acid to generate as major products: 8(R),9(S)-, 11(R),12(S)- and 14(S),15(R)-epoxyeicosatrienoic acids with optical purities of 97, 88, and 70%, respectively. Inhibition studies utilizing a panel of polyclonal antibodies to several rat liver cytochrome P-450 isoforms, indicated that the renal epoxygenase(s) belongs to the cytochrome P-450 2C gene family. Dietary salt, administered either as a 2-2.5% (w/v) solution in the drinking water or as a modified solid diet containing 8% NaCl (w/w), resulted in marked and selective increases in the renal microsomal epoxygenase activity (416 and 260% of controls, for the liquid and solid forms of NaCl, respectively) with no significant changes in the microsomal omega/omega-1 oxygenase or in the hepatic arachidonic acid monooxygenase reaction. Immunoblotting studies demonstrated that dietary salt induced marked increases in the concentration of a cytochrome P-450 isoform(s) recognized by polyclonal antibodies raised against human liver cytochrome P-450 2C10 or rat liver cytochrome P-450 2C11. Comparisons of the stereochemical selectivity of the induced and non-induced microsomal epoxygenase(s) with that of purified rat liver cytochrome P-450 2C11 suggest that the salt-induced protein(s) is catalytically and structurally different from liver cytochrome P-450 2C11. The in vivo significance of dietary salt in regulating the activities of the kidney endogenous arachidonic acid epoxygenase was established by the demonstration of a salt-induced 10-20-fold increase in the urinary output of epoxygenase metabolites. These results, in conjunction with published evidence demonstrating the potent biological activities of its metabolites, suggest a role for the epoxygenase in the renal response to dietary salt.  相似文献   

13.
Elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells is proposed to be required for generation of vascular actions of endothelium-derived hyperpolarizing factor (EDHF). This study was designed to determine the endothelial Ca(2+) source that is important in development of EDHF-mediated vascular actions. In porcine coronary artery precontracted with U-46619, bradykinin (BK) and cyclopiazonic acid (CPA) caused endothelium-dependent relaxations in the presence of N(G)-nitro-L-arginine (L-NNA). The L-NNA-resistant relaxant responses were inhibited by high K(+), indicating an involvement of EDHF. In the presence of Ni(2+), which inhibits Ca(2+) influx through nonselective cation channels, the BK-induced EDHF relaxant response was greatly diminished and the CPA-induced response was abolished. BK and CPA elicited membrane hyperpolarization of smooth muscle cells of porcine coronary artery. Ni(2+) suppressed the hyperpolarizing responses in a manner analogous to removal of extracellular Ca(2+). EDHF-mediated relaxations and hyperpolarizations evoked by BK and CPA in porcine coronary artery showed a temporal correlation with the increases in [Ca(2+)](i) in porcine aortic endothelial cells. The extracellular Ca(2+)-dependent rises in [Ca(2+)](i) in endothelial cells stimulated with BK and CPA were completely blocked by Ni(2+). These results suggest that Ca(2+) influx into endothelial cells through nonselective cation channels plays a crucial role in the regulation of EDHF.  相似文献   

14.
Chiral analysis of the rat liver microsomal arachidonic acid epoxygenase metabolites shows enantioselective formation of 8,9-, 11,12-, and 14,15-cis-epoxyeicosatrienoic acids in an approximately 2:1, 4:1, and 2:1 ratio of antipodes, respectively. Animal treatment with the cytochrome P-450 inducer phenobarbital increased the overall enantiofacial selectivity of the microsomal epoxygenase and caused a concomitant inversion in the absolute configurations of its metabolites. These effects of phenobarbital were time-dependent and temporally linked to increases in the concentration of microsomal cytochrome P-450 enzymes. Reconstitution of the epoxygenase reaction utilizing several purified cytochrome P-450 demonstrated that the asymmetry of epoxidation is under cytochrome P-450 enzyme control. These results established that the chirality of the hepatic arachidonic acid epoxygenase is under regulatory control and confirm cytochromes P-450 IIB1 and IIB2 as two of the endogenous epoxygenases induced in vivo by phenobarbital.  相似文献   

15.
H(2)O(2) is a reactive oxygen species that contracts or relaxes vascular smooth muscle, but the molecular basis of these effects remains obscure. We previously demonstrated that H(2)O(2) opens the large-conductance, calcium- and voltage-activated (BK(Ca)) potassium channel of coronary myocytes (2) and now report physiological and biochemical evidence that the effect of H(2)O(2) on coronary smooth muscle involves the phospholipase A(2) (PLA(2))/arachidonic acid (AA) signaling cascades. H(2)O(2) stimulation of BK(Ca) channel activity was inhibited by arachidonyl trifluoromethyl ketone, an inhibitor of cytosolic PLA(2). Furthermore, H(2)O(2) stimulated release of [(3)H]AA from coronary myocytes, and exogenous AA mimicked the effect of H(2)O(2) on BK(Ca) channels. Inhibitors of protein kinase C activity attenuated the effect of H(2)O(2) on BK(Ca) channels, [(3)H]AA release, or intact coronary arteries. In addition, the effect of H(2)O(2) or AA on BK(Ca) channels was inhibited by blockers of lipoxygenase metabolism. In contrast, inhibitors of cyclooxygenase or cytochrome P-450 had no effect. We propose that H(2)O(2) relaxes coronary arteries by stimulating BK(Ca) channels via the PLA(2)/AA signaling cascade and that lipoxygenase metabolites mediate this response.  相似文献   

16.
Diabetes mellitus compromises endothelium-dependent relaxation of blood vessels. This has been linked to the generation of reactive oxygen species (ROS), which neutralise nitric oxide (NO) and interfere with vasodilator function. Experiments using chelators have emphasised the importance of ROS produced by transition metal catalysed reactions. However, particularly for the small arteries and arterioles that control microcirculatory blood flow, NO is not the only endothelium-derived mediator; endothelium-derived hyperpolarizing factor (EDHF) has a major role. EDHF-mediated vasodilation is severely curtailed by diabetes; however, little information exists on the underlying pathophysiology. Deficits in the EDHF system, alone or in combination with the NO system, are crucial for the development of diabetic microvascular complications. To further elucidate the mechanisms involved, the aim was to examine the effects of diabetes and preventive and intervention chelator therapy with trientine on a preparation that has well-defined NO and EDHF-mediated responses, the rat mesenteric vascular bed. In phenylephrine-preconstricted preparations, maximum vasodilation to acetylcholine was reduced by 35 and 44% after 4 and 8 weeks of streptozotocin-induced diabetes, respectively. Trientine treatment over the first 4 weeks gave 72% protection; intervention therapy over the final 4 weeks prevented deterioration and corrected the initial deficit by 68%. These responses depend on both NO and EDHF. When the latter mechanism was isolated by NO synthase inhibition, diabetic deficits of 53.4 (4 weeks) and 65.4% (8 weeks) were revealed, that were 65% prevented and 50% corrected by trientine treatment. Neither diabetes nor trientine altered vascular smooth muscle responses to the NO donor, sodium nitroprusside (SNP). Thus, the data suggest that metal catalysed ROS production makes a substantial contribution to defects in both the EDHF and NO endothelial mechanisms in diabetes, which has therapeutic implications for microvascular complications.  相似文献   

17.
Diabetes mellitus compromises endothelium-dependent relaxation of blood vessels. This has been linked to the generation of reactive oxygen species (ROS), which neutralise nitric oxide (NO) and interfere with vasodilator function. Experiments using chelators have emphasised the importance of ROS produced by transition metal catalysed reactions. However, particularly for the small arteries and arterioles that control microcirculatory blood flow, NO is not the only endothelium-derived mediator; endothelium-derived hyperpolarizing factor (EDHF) has a major role. EDHF-mediated vasodilation is severely curtailed by diabetes; however, little information exists on the underlying pathophysiology. Deficits in the EDHF system, alone or in combination with the NO system, are crucial for the development of diabetic microvascular complications. To further elucidate the mechanisms involved, the aim was to examine the effects of diabetes and preventive and intervention chelator therapy with trientine on a preparation that has well-defined NO and EDHF-mediated responses, the rat mesenteric vascular bed. In phenylephrine-preconstricted preparations, maximum vasodilation to acetylcholine was reduced by 35 and 44% after 4 and 8 weeks of streptozotocin-induced diabetes, respectively. Trientine treatment over the first 4 weeks gave 72% protection; intervention therapy over the final 4 weeks prevented deterioration and corrected the initial deficit by 68%. These responses depend on both NO and EDHF. When the latter mechanism was isolated by NO synthase inhibition, diabetic deficits of 53.4 (4 weeks) and 65.4% (8 weeks) were revealed, that were 65% prevented and 50% corrected by trientine treatment. Neither diabetes nor trientine altered vascular smooth muscle responses to the NO donor, sodium nitroprusside (SNP). Thus, the data suggest that metal catalysed ROS production makes a substantial contribution to defects in both the EDHF and NO endothelial mechanisms in diabetes, which has therapeutic implications for microvascular complications.  相似文献   

18.
The possible roles of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)), nitric oxide (NO), arachidonic acid (AA) metabolites, and Ca(2+)-activated K(+) (K(Ca)) channels in adrenergically induced vasomotion were examined in pressurized rat mesenteric arteries. Removal of the endothelium or buffering [Ca(2+)](i) selectively in endothelial cells with BAPTA eliminated vasomotion in response to phenylephrine (PE; 10.0 microM). In arteries with intact endothelium, inhibition of NO synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME; 300.0 microM) or N(omega)-nitro-l-arginine (l-NNA; 300.0 microM) did not eliminate vasomotion. Neither inhibition of cGMP formation with 10.0 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) nor inhibition of prostanoid formation (10.0 microM indomethacin) eliminated vasomotion. Similarly, inhibition of AA cytochrome P-450 metabolism with an intraluminal application of 17-octadecynoic acid (17-ODYA) or 6-(2-propargyloxyphenyl)hexanoic acid (PPOH) failed to eliminate vasomotion. In contrast, intraluminal application of the K(Ca) channel blockers apamin (250.0 nM) and charybdotoxin (100.0 nM), together, abolished vasomotion and changed synchronous Ca(2+) oscillations in smooth muscle cells to asynchronous propagating Ca(2+) waves. Apamin, charybdotoxin, or iberiotoxin (100.0 nM) alone did not eliminate vasomotion, nor did the combination of apamin and iberiotoxin. The results show that adrenergic vasomotion in rat mesenteric arteries is critically dependent on Ca(2+)-activated K(+) channels in endothelial cells. Because these channels (small- and intermediate-conductance K(Ca) channels) are a recognized component of EDHF, we conclude therefore that EDHF is essential for the development of adrenergically induced vasomotion.  相似文献   

19.
The perivascular sensory nerve (PvN) Ca(2+)-sensing receptor (CaR) is implicated in Ca(2+)-induced relaxation of isolated, phenylephrine (PE)-contracted mesenteric arteries, which involves the vascular endogenous cannabinoid system. We determined the effect of inhibition of diacylglycerol (DAG) lipase (DAGL), phospholipase A(2) (PLA(2)), and cytochrome P-450 (CYP) on Ca(2+)-induced relaxation of PE-contracted rat mesenteric arteries. Our findings indicate that Ca(2+)-induced vasorelaxation is not dependent on the endothelium. The DAGL inhibitor RHC 802675 (1 microM) and the CYP and PLA(2) inhibitors quinacrine (5 microM) (EC(50): RHC 802675 2.8 +/- 0.4 mM vs. control 1.4 +/- 0.3 mM; quinacrine 4.8 +/- 0.4 mM vs. control 2.0 +/- 0.3 mM; n = 5) and arachidonyltrifluoromethyl ketone (AACOCF(3), 1 microM) reduced Ca(2+)-induced relaxation of mesenteric arteries. Synthetic 2-arachidonoylglycerol (2-AG) and glycerated epoxyeicosatrienoic acids (GEETs) induced concentration-dependent relaxation of isolated arteries. 2-AG relaxations were blocked by iberiotoxin (IBTX) (EC(50): control 0.96 +/- 0.14 nM, IBTX 1.3 +/- 0.5 microM) and miconazole (48 +/- 3%), and 11,12-GEET responses were blocked by IBTX (EC(50): control 55 +/- 9 nM, IBTX 690 +/- 96 nM) and SR-141716A. The data suggest that activation of the CaR in the PvN network by Ca(2+) leads to synthesis and/or release of metabolites of the CYP epoxygenase pathway and metabolism of DAG to 2-AG and subsequently to GEETs. The findings indicate a role for 2-AG and its metabolites in Ca(2+)-induced relaxation of resistance arteries; therefore this receptor may be a potential target for the development of new vasodilator compounds for antihypertensive therapy.  相似文献   

20.
We investigated whether nitric oxide (NO) exposure alters the balance between NO and endothelium-derived hyperpolarizing factor (EDHF) released from rat renal arteries. To produce states of acutely or chronically excessive NO, lipopolysaccharide (LPS) was administered intraperitoneally to rats in a single dose of 4 mg/kg (LPS-single group) or in stepwise doses of 0.5, 1.0 and 2.0 mg/kg every other day (LPS-repeated group). On the day after LPS treatment, the protein levels of inducible NO synthase (iNOS) and endothelial NOS (eNOS) were measured, and the relaxation responses were determined in the renal arteries. The protein levels of iNOS markedly increased in both LPS-treated groups, while those of eNOS significantly increased in the LPS-repeated group compared with those in the respective control groups. In both LPS-treated groups, the relaxations in response to acetylcholine (ACh) and sodium nitroprusside remained unchanged. The ACh-induced relaxations in the presence of N(G)-nitro-L-arginine methyl ester, a NOS inhibitor, or by 1H-[1, 2, 4-] oxadiazole [4, 3-a] quinoxalin-1-one, a soluble guanylyl cyclase inhibitor, i.e. EDHF-mediated relaxations were significantly impaired in the LPS-repeated group but not in the LPS-single group, indicating increase in NO-mediated relaxation in the LPS-repeated group. These changes in the protein levels and EDHF-mediated relaxations induced by ACh observed in the LPS-repeated group were restored by treatment with NOX-100, a NO scavenger. These results suggest that persistent but not acute excessive NO exposure in rats impairs EDHF-mediated relaxation in renal arteries, leading to a compensatory upregulation of the eNOS/NO pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号